JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON GENERALIZED RICCI-RECURRENT TRANS-SASAKIAN MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON GENERALIZED RICCI-RECURRENT TRANS-SASAKIAN MANIFOLDS
Kim, Jeong-Sik; Prasad, Rajendra; Tripathi, Mukut-Mani;
  PDF(new window)
 Abstract
Generalized Ricci-recurrent trans-Sasakian manifolds are studied. Among others, it is proved that a generalized Ricci-recurrent cosymplectic manifold is always recurrent Generalized Ricci-recurrent trans-Sasakian manifolds of dimension 5 are locally classified. It is also proved that if M is one of Sasakian, -Sasakian, Kenmotsu or -Kenmotsu manifolds, which is gener-alized Ricci-recurrent with cyclic Ricci tensor and non-zero A (ξ) everywhere; then M is an Einstein manifold.
 Keywords
Sasakian;-Sasakian;Kenmotsu;-Kenmotsu;f-Kenmotsu;cosymplectic and trans-Sasakian structures;Ricci-recurrent;generalized Ricci-recurrent and Einstein manifolds.;
 Language
English
 Cited by
1.
A Class of Lorentzian α-Sasakian Manifolds,;;;

Kyungpook mathematical journal, 2009. vol.49. 4, pp.789-799 crossref(new window)
2.
ON A CLASS OF THREE-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS,;;

대한수학회논문집, 2012. vol.27. 4, pp.795-808 crossref(new window)
1.
Harmonic Almost Contact Structures, Geometriae Dedicata, 2007, 123, 1, 131  crossref(new windwow)
2.
A Class of Lorentzian α-Sasakian Manifolds, Kyungpook mathematical journal, 2009, 49, 4, 789  crossref(new windwow)
3.
Trans-Sasakian Manifolds Homothetic to Sasakian Manifolds, Mediterranean Journal of Mathematics, 2016, 13, 5, 2951  crossref(new windwow)
4.
A note on trans-Sasakian manifolds, Mathematica Slovaca, 2013, 63, 6  crossref(new windwow)
5.
ON A CLASS OF THREE-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS, Communications of the Korean Mathematical Society, 2012, 27, 4, 795  crossref(new windwow)
 References
1.
Lecture Notes in Mathematics, 1976. vol.509.

2.
Publ. Mat., 1990. vol.34. 1, pp.199-207 crossref(new window)

3.
Tensor(N.S.), 1995. vol.56. 3, pp.312-317

4.
Ricci tensor in 3-dimensional trans-Sasakian manifolds, 0000.

5.
Progress in Mathematics, 1998. vol.155.

6.
Ann. Mat. Pura Appl., 1980. vol.123. 4, pp.35-58 crossref(new window)

7.
Kodai Math. J., 1981. vol.4. 1, pp.1-27 crossref(new window)

8.
Tohoku Math. J., 1972. vol.24. pp.93-103 crossref(new window)

9.
Ann. Mat. Pura Appl., 1992. vol.162. 4, pp.77-86 crossref(new window)

10.
Tensor (N.S.), 1992. vol.51. 1, pp.91-102

11.
Colloq. Math., 1989. vol.57. 1, pp.73-87

12.
Monograph 1, 1991.

13.
Publ. Math. Debrecen, 1985. vol.32. 3-4, pp.187-193

14.
J. London Math. Soc., 1952. vol.27. pp.287-295 crossref(new window)

15.
Tohoku Math. J., 1969. vol.21. pp.21-38 crossref(new window)

16.
Nepali Math. Sci. Rep., 1999. vol.18. 1-2, pp.11-14