JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INVARIANT MEASURE AND THE EULER CHARACTERISTIC OF PROJECTIVELY ELAT MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
INVARIANT MEASURE AND THE EULER CHARACTERISTIC OF PROJECTIVELY ELAT MANIFOLDS
Jo, Kyeong-Hee; Kim, Hyuk;
  PDF(new window)
 Abstract
In this paper, we show that the Euler characteristic of an even dimensional closed projectively flat manifold is equal to the total measure which is induced from a probability Borel measure on RP invariant under the holonomy action, and then discuss its consequences and applications. As an application, we show that the Chen's conjecture is true for a closed affinely flat manifold whose holonomy group action permits an invariant probability Borel measure on RP ; that is, such a closed affinly flat manifold has a vanishing Euler characteristic.
 Keywords
Euler characteristic;invariant measure;projectively flat manifold;affinely flat manifold;polyhedral Gauss-Bonnet formula;Chern′s conjecture;
 Language
English
 Cited by
1.
The analytic continuation of hyperbolic space, Geometriae Dedicata, 2012, 161, 1, 129  crossref(new windwow)
 References
1.
Linear Operators, 1958.

2.
Comment. Math. Helv., 1980. vol.55. pp.576-582 crossref(new window)

3.
Comm. Math. Helv., 1981. vol.56. pp.487-523 crossref(new window)

4.
Contemp. Math., 1988. vol.74. pp.169-198 crossref(new window)

5.
Van Nostrand Math. Studies #16, 1969.

6.
Ann. of Math., 1975. vol.10. pp.369-390

7.
Lecture notes in Math., 1983. vol.1000.

8.
Topology Appl., 1991. vol.40. pp.195-201 crossref(new window)

9.
Proc. Amer. Math. Soc., 1993. vol.118. pp.311-315 crossref(new window)

10.
Proceedings of the international conference on pure and applied Math., Beijing and Yanji, 1992. pp.71-81

11.
Ist. Naz. Alta. Mat. Symp. Math., 1982. vol.26. pp.153-161

12.
Bull. Amer. Math. Soc., 1975. vol.81. pp.937-938 crossref(new window)

13.
Adv. Math., 1977. vol.25. pp.178-187 crossref(new window)

14.
Osaka J. Math., 1974. vol.11. pp.181-210

15.
The geometry and topology of 3-manifolds, 1977.

16.
Monographs in Mathematics., 1984. vol.81.