JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON SEMI-RIEMANNIAN MANIFOLDS SATISFYING THE SECOND BIANCHI IDENTITY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON SEMI-RIEMANNIAN MANIFOLDS SATISFYING THE SECOND BIANCHI IDENTITY
Kwon, Jung-Hwan; Pyo, Yong-Soo; Suh, Young-Jin;
  PDF(new window)
 Abstract
In this paper we introduce new notions of Ricci-like tensor and many kind of curvature-like tensors such that concircular, projective, or conformal curvature-like tensors defined on semi-Riemannian manifolds. Moreover, we give some geometric conditions which are equivalent to the Codazzi tensor, the Weyl tensor, or the second Bianchi identity concerned with such kind of curvature-like tensors respectively and also give a generalization of Weyl`s Theorem given in [18] and [19].
 Keywords
semi-Riemannian manifold;projective curvature tensor;conformal curvature tensor;Weyl tensor;harmonic Weyl tensor;curvature-like tensor;curvature-like form;closed;coclosed;
 Language
English
 Cited by
1.
Conformally symmetric semi-Riemannian manifolds, Journal of Geometry and Physics, 2006, 56, 5, 875  crossref(new windwow)
 References
1.
Kodai. Math. J, vol.11. pp.325-343 crossref(new window)

2.
J. Differential Geometry, vol.3. pp.379-392 crossref(new window)

3.
Einstein manifolds,

4.
Invent. Math., vol.63. pp.163-286

5.
Rocky Mountain J. Math., vol.31-2. pp.417-435

6.
Rocky Mountain J. Math., vol.31-3. pp.873-897

7.
Lecture Notes No. 838, pp.251-255

8.
Math. Ann., vol.259. pp.145-152 crossref(new window)

9.
Comp. Math., vol.49. pp.405-433

10.
Tensor, N. S., vol.31. pp.159-255

11.
London Math. Soc., vol.47. pp.15-26 crossref(new window)

12.
Geom. Dedicata, vol.7. pp.259-280

13.
J. Korean Math. Soc., vol.28. pp.229-244

14.
Foundations of differential geometry, Ⅰand Ⅱ,

15.
Semi-Riemannian Geometry with applications to relativity,

16.
Proc. 13th bianual Seminar Canada Math. Congress, vol.2. pp.115-124

17.
Houston J. Math., vol.28. pp.47-70

18.
Math. Z., vol.26. pp.384-411

19.
Zur infinitesimaly geometrie : Einordnung der prrojektiren und der Auffussung, pp.99-112

20.
The theory of Lie derivatives and its applications,

21.
Integral Formulas in Riemannian Geometry,

22.
Ann. of Math. Studies, vol.32.

23.
Series in Pure Math.,