JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ALMOST STABILITY OF THE MANN ITERATION METHOD WITH ERRORS FOR STRICTLY HEMI-CONTRACTIVE OPERATORS IN SMOOTH BANACH SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ALMOST STABILITY OF THE MANN ITERATION METHOD WITH ERRORS FOR STRICTLY HEMI-CONTRACTIVE OPERATORS IN SMOOTH BANACH SPACES
Liu, Z.; Kang, S.M.; Shim, S.H.;
  PDF(new window)
 Abstract
Let K be a nonempty closed bounded convex subset of an arbitrary smooth Banach space X and T : KlongrightarrowK be a strictly hemi-contractive operator. Under some conditions we obtain that the Mann iteration method with errors both converges strongly to a unique fixed point of T and is almost T-stable on K. The results presented in this paper generalize the corresponding results in [l]-[7], [20] and others.
 Keywords
Mann iteration method with errors;strictly hemi-contractive operators;strongly pseudocontractive operators;local strongly pseudocontractive operators;smooth Banach spaces;
 Language
English
 Cited by
1.
The equivalence between the convergences of Mann and Ishikawa iteration methods with errors for demicontinuousφ-strongly accretive operators in uniformly smooth Banach spaces, International Journal of Mathematics and Mathematical Sciences, 2006, 2006, 1  crossref(new windwow)
2.
Implicit Mann Type Iteration Method Involving Strictly Hemicontractive Mappings in Banach Spaces, Journal of Applied Mathematics, 2012, 2012, 1  crossref(new windwow)
 References
1.
Nonlinear Anal. TMA, 1997. vol.30. 7, pp.4197-4208 crossref(new window)

2.
J. Math. Anal. Appl., 1998. vol.224. pp.149-165 crossref(new window)

3.
Proc. Amer. Math. Soc., 1987. vol.99. 2, pp.283-288 crossref(new window)

4.
Proc. Amer. Math. Soc., 1994. vol.120. pp.545-551 crossref(new window)

5.
J. Math. Anal. Appl., 1995. vol.192. pp.502-518 crossref(new window)

6.
Numer. Funct. Anal. Optimiz., 1994. vol.15. pp.779-790 crossref(new window)

7.
J. Math. Anal. Appl., 1995. vol.192. pp.727-741 crossref(new window)

8.
Ph. D. Thesis, University of Missouri-Rolla, 1987.

9.
Math. Japon., 1988. vol.33. pp.687-692

10.
Math. Japon., 1988. vol.33. pp.693-706

11.
Proc. Amer. Math. Soc., 1974. vol.44. pp.147-150 crossref(new window)

12.
Acta Sci. Math. (Szeged), 2001. vol.67. pp.821-831

13.
Math. and Computer Modell, 2001. vol.34. pp.319-330 crossref(new window)

14.
J. Math. Anal. Appl., 2001. vol.253. pp.35-49 crossref(new window)

15.
Neural. Parallel & Sci. Comput., 2001. vol.9. pp.103-118

16.
Proc. Amer. Math. Soc., 1953. vol.4. pp.506-510 crossref(new window)

17.
J. Math. Anal. Appl., 1996. vol.204. pp.677-692 crossref(new window)

18.
Indian J. pure appl. Math., 1997. vol.28. pp.1017-1029

19.
J. Math. Anal. Appl., 1998. vol.227. pp.319-334 crossref(new window)

20.
J. Korean Math. Soc., 1994. vol.31. pp.333-337

21.
J. Math. Anal. Appl., 1976. vol.56. pp.741-750 crossref(new window)

22.
Applicable Anal., 1991. vol.40. pp.67-72 crossref(new window)

23.
Proc. Amer. Math. Soc., 1991. vol.113. 3, pp.727-731 crossref(new window)

24.
J. Math. Anal. Appl., 1998. vol.224. pp.91-101 crossref(new window)