JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON SECOND ORDER NECESSARY OPTIMALITY CONDITIONS FOR VECTOR OPTIMIZATION PROBLEMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON SECOND ORDER NECESSARY OPTIMALITY CONDITIONS FOR VECTOR OPTIMIZATION PROBLEMS
Lee, Gue-Myung; Kim, Moon-Hee;
  PDF(new window)
 Abstract
Second order necessary optimality condition for properly efficient solutions of a twice differentiable vector optimization problem is given. We obtain a nonsmooth version of the second order necessary optimality condition for properly efficient solutions of a nondifferentiable vector optimization problem. Furthermore, we prove a second order necessary optimality condition for weakly efficient solutions of a nondifferentiable vector optimization problem.
 Keywords
vector optimization problem;properly efficient solutions;second order necessary optimality conditions;second order contingent set;second order adjacent set;singular approximate subdifferential;(Mordukhovich) normal cone;
 Language
English
 Cited by
1.
벡터 볼록 최적화 문제를 위한 벡터 변분부등식,이규명;

대한수학회논문집, 2003. vol.18. 4, pp.587-602 crossref(new window)
1.
, Communications of the Korean Mathematical Society, 2003, 18, 4, 587  crossref(new windwow)
2.
Relations between vector continuous-time program and vector variational-type inequality, Journal of Applied Mathematics and Computing, 2004, 16, 1-2, 279  crossref(new windwow)
3.
Vector Variational Inequalities for Nondifferentiable Convex Vector Optimization Problems, Journal of Global Optimization, 2005, 32, 4, 597  crossref(new windwow)
 References
1.
Mathematical Methods of Game and Economic Theory, 1979.

2.
Theory of Games and Statistical Decisions, 1954.

3.
Mathematical Statistics, A Decision Theoretic Approach, 1967.

4.
Mathematical Economics, 1974.

5.
Multiple Criteria Decision Making, 1982.

6.
Theory of Multiobjective Optimization, 1985.

7.
Theorems of alternative, quadratic programs and complementarity problems in Variational Inequalities and Complementarity Problems, 1980. pp.151-186

8.
New Trends in Mathematical Programming, 1997.

9.
Progress in Optimization, 2000. pp.167-179

10.
J. Optim. Theory Appl., 1997. vol.95. pp.431-443 crossref(new window)

11.
Math. Methods of Oper. Res., 2001. vol.53. pp.215-232 crossref(new window)

12.
J. Optim. Theory Appl., 2002. vol.113. pp.583-596 crossref(new window)

13.
Convex Analysis and Nonlinear Optimization, 2000.

14.
Optimization and Nonsmooth Analysis, 1983.

15.
Nonsmooth Analysis and Control Theory, 1998.

16.
Nondifferentiable Optimization, 1985.

17.
Theoretical Aspects of Industrial Design, 1992. pp.32-46

18.
Math. Program., 1994. vol.67. pp.225-245 crossref(new window)

19.
Optimization, 1994. vol.31. pp.47-61 crossref(new window)

20.
Optimization, 1994. vol.28. pp.223-236 crossref(new window)

21.
Set-Valued Anal., 1993. vol.1. pp.213-246 crossref(new window)

22.
Set-Valued Analysis, 1990.

23.
J. Math. Anal. Appl., 1991. vol.154. pp.303-317 crossref(new window)

24.
J. Math. Anal. Appl., 1968. vol.22. pp.618-630 crossref(new window)

25.
J. Math. Anal. Appl., 1978. vol.71. pp.232-241