JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE DYNAMICS OF BIRATIONAL MAPPINGS OF THE PLANE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE DYNAMICS OF BIRATIONAL MAPPINGS OF THE PLANE
Bedford, Eric;
  PDF(new window)
 Abstract
In this paper we discuss how the dynamics of certain birational maps of the real plane may be studied using complex methods.
 Keywords
dynamics;birational mappings;
 Language
English
 Cited by
1.
On the degree growth of birational mappings in higher dimension, Journal of Geometric Analysis, 2004, 14, 4, 567  crossref(new windwow)
 References
1.
N. Abarenkova, J.-Ch. Angles d'Auriac, S. Boukraa, S. Hassani and J.-M. Mail-lard, Real Arnold complexity versus real topological entropy for birational trans-formations, J. Phys. A: Math. Gen. 33 (2000), 1465-1501. crossref(new window)

2.
N. Abarenkova, J.-Ch. Angles d'Auriac, S. Boukraa and J.-M. Maillard, Growth complexity spectrum of some discrete dynamical systems, Physica D 130 (1999), 27-42. crossref(new window)

3.
N. Abarenkova, J.-Ch. Angles d'Auriac, S. Boukraa and J.-M. Maillard, Real topological entropy versus metric entropy for birational measure-preserving transformations, Physica D 144 (2000), 387-433. crossref(new window)

4.
E. Bedford and J. Diller, Energy and invariant measure for birational surface maps, preprint.

5.
E. Bedford and J. Diller, Real and complex dynamics of a family of birational maps of the plane: The golden mean subshift, preprint.

6.
E. Bedford and J. Diller, in preparation

7.
E. Bedford and J. Smillie, Polynomial diffeomorphisms of $C^2$. VIII: Quasi-expansion, Amer. J. Math. 124 (2002), 221–271. crossref(new window)

8.
E. Bedford and J. Smillie, Real polynomial diffeomorphisms with maximal entropy: Tangencies, Math. DS/0103038.

9.
R. Devaney and Z. Nitecki, Shift automorphisms in the H´enon family, Comm. Math. Phys. 67 (1979), 48–137. crossref(new window)

10.
J. Diller, Dynamics of birational maps of $P^2$, Indiana U. Math. J. 45 (1996), 721–772.

11.
J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. of Math. 123 (2001), 1135–1169. crossref(new window)

12.
C. Favre, Points périodiques d'applications birationnelles de $P^2$, Ann. Inst. Fourier (Grenoble) 48 (1998), 999–1023.

13.
S. Friedland, Entropy of rational self-maps of projective varieties, in Dynamical Systems and Related Topics (Nagoya, 1990), pages 128–140. World Sci. Publishing, River Edge, NJ, 1991.

14.
J. Hietarinta and C. M. Viallet, Singularity confinement and chaos in discrete systems, Phys. Rev. Lett. 81 (1997), 325–328. crossref(new window)

15.
S. Morosawa, Y. Nishimura, M. Taniguchi and T. Ueda, Holomorphic Dynamics, Cambridge Univ. Press, 2000

16.
R. Oberste-Vorth, Complex horseshoes and the dynamics of mappings of two complex variables, Ph.D dissertation, Cornell Univ., Ithaca, NY, 1987

17.
T. Takenawa, A geometric approach to singularity confinement and algebraic entropy, J. Phys. A: Math. Gen. 34 (2001), L95–L102. crossref(new window)

18.
T. Takenawa, Algebraic entropy and the space of initial values for discrete dynamical systems, J. Phys. A: Math. Gen. 34 (2001), 10533–10545. crossref(new window)

19.
T. Takenawa, Discrete dynamical systems associated with root systems of indefinite type, Comm. Math. Phys. 224 (2001), 657–681. crossref(new window)