JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ROTATIONALLY INVARIANT COMPLEX MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ROTATIONALLY INVARIANT COMPLEX MANIFOLDS
Isaev, A.V.;
  PDF(new window)
 Abstract
In this paper we discuss complex manifolds of dimension that admit effective actions of either by biholomorphic transformations.
 Keywords
complex manifolds;group actions;
 Language
English
 Cited by
 References
1.
D. Barrett, E. Bedford and J. Dadok, $\mathbb{T}^n-actions $ on holomorphically separable complex manifolds, Math. Z. 202 (1989), 65–82. crossref(new window)

2.
J. Bland, T. Duchamp and M. Kalka, A characterization of $\mathbb{CP}^n$ by its automor-phism group, Complex Analysis (University Park, Pa, 1986), 60–65, Lecture Notes In Mathematics 1268, Springer-Verlag, 1987. crossref(new window)

3.
J. A. Gifford, A. V. Isaev and S. G. Krantz, On the dimensions of the auto-morphism groups of hyperbolic Reinhardt domains, Illinois J. Math. 44 (2000), 602–618.

4.
R. E. Greene and S. G. Krantz, Characterization of complex manifolds by the isotropy subgroups of their automorphism groups, Indiana Univ. Math. J. 34 (1985), 865–879. crossref(new window)

5.
W. C. Hsiang and W. Y. Hsiang, Some results on differentiable actions, Bull. Amer. Math. Soc. 72 (1966), 134–138. crossref(new window)

6.
W. Y. Hsiang, On the principal orbit type and P. A. Smith theory of SU(p) actions, Topology 6 (1967), 125–135. crossref(new window)

7.
A. V. Isaev and S. G. Krantz, On the automorphism groups of hyperbolic manifolds, J. Reine Angew. Math. 534 (2001), 187-194. crossref(new window)

8.
A. V. Isaev and N. G. Kruzhilin, Effective actions of the unitary group on complex manifolds, to appear in Canad. J. Math. in 2002

9.
W. Kaup, Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen, Invent. Math. 3 (1967), 43-70. crossref(new window)

10.
A. Kruger, Homogeneous Cauchy-Riemann structures, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18 (1991), no. 4, 193-212.

11.
A. Klimyk and K. Schmudgen, Quantum groups and their representations, Texts and Monographs in Physics, Springer, Berlin, 1997.

12.
K. Mukoyama, Smooth SU(p, q)-actions on (2p+2q−1)-sphere and on the com-plex projective (p + q − 1)-space, Kyushu J. Math. 55 (2001), 213–236. crossref(new window)

13.
T. Nagano, Transformation groups with (n - 1)-dimensional orbits on non-compact manifolds, Nagoya Math. J. 14 (1959), 25-38.

14.
H. Rossi, Attaching analytic spaces to an analytic space along a pseudoconcave boundary, Proc. Conf. Complex Analysis, Minneapolis, 1964, Springer-Verlag,1965, 242-256.

15.
H. Rossi, Homogeneous strongly pseudoconvex hypersurfaces, Proc. Conf. Complex Analysis Rice Univ., Houston, 1972, Rice Univ. Studies, 59 (1973), no. 1, 131-145.

16.
F. Uchida, Smooth actions of special unitary groups on cohomology complex projective spaces, Osaka J. Math. 12 (1975), 375-400.

17.
E. Vinberg and A. Onishchik, Lie Groups and Algebraic Groups, Springer-Verlag, 1990.