JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A CHARACTERIZATION OF Ck×(C*) FROM THE VIEWPOINT OF BIHOLOMORPHIC AUTOMORPHISM GROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A CHARACTERIZATION OF Ck×(C*) FROM THE VIEWPOINT OF BIHOLOMORPHIC AUTOMORPHISM GROUPS
Kodama, Akio; Shimizu, Satoru;
  PDF(new window)
 Abstract
We show that if a connected Stein manifold M of dimension n has the holomorphic automorphism group Aut(M) isomorphic to as topological groups, then M itself is biholomorphically equivalent to . Besides, a new approach to the study of U(n)-actions on complex manifolds of dimension n is given.
 Keywords
holomorphic automorphism groups;holomorphic equivalences;torus actions;
 Language
English
 Cited by
 References
1.
P. Ahern and W. Rudin, Periodic Automorphisms of $C^n$, Indiana Univ. Math. J. 44 (1995), 287–303

2.
D. N. Akhiezer, Lie Group Actions in Complex Analysis, Aspects of Mathematics E 27, Vieweg, Braunschweig/Wiesbaden, 1995

3.
D. E. Barrett, E. Bedford, and J. Dadok, $T^n$-actions on holomorphically separable complex manifolds, Math. Z. 202 (1989), 65–82 crossref(new window)

4.
D. Burns, S. Shnider and R. O. Wells, On deformations of strictly pseudoconvex domains, Invent. Math. 46 (1978), 237–253 crossref(new window)

5.
R. E. Greene and S. G. Krantz, Deformation of complex structures, estimates for the $\overline{\partial}$ equation, and stability of the Bergman kernel, Adv. Math. 43 (1982), 1–86. crossref(new window)

6.
S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, London, Toronto, Sydney and San Francisco, 1978

7.
A. V. Isaev, Characterization of $C^n$ by its automorphism group, Proc. Steklov Inst. Math. 235 (2001), 103–106.

8.
A. V. Isaev and N. G. Kruzhilin, Effective actions of the unitary group on complex manifolds, Canad. J. Math. 54 (2002), 1254–1279. crossref(new window)

9.
W. Kaup, Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen, Invent. Math. 3 (1967), 43–70. crossref(new window)

10.
A. Kodama, Characterizations of certain weakly pseudoconvex domains $E({\kappa},{\alpha})$ in $C^n$, Tohoku Math. J. 40 (1988), 343–365.

11.
A. Kodama and S. Shimizu, A group-theoretic characterization of the space obtained by omitting the coordinate hyperplanes from the complex Euclidean space, preprint, 2002

12.
S. G. Krantz, Determination of a domain in complex space by its automorphism group, Complex Variables 47 (2002), 215–223. crossref(new window)

13.
N. G. Kruzhilin, Holomorphic automorphisms of hyperbolic Reinhardt domains, Math. USSR-Izv. 32 (1989), 15–38. crossref(new window)

14.
I. Naruki, The holomorphic equivalence problem for a class of Reinhardt domains, Publ. Res. Inst. Math. Sci., Kyoto Univ. 4 (1968), 527–543

15.
R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1986

16.
S. Shimizu, Automorphisms and equivalence of bounded Reinhardt domains not containing the origin, Tohoku Math. J. 40 (1988), 119–152 crossref(new window)

17.
S. Shimizu, Automorphisms of bounded Reinhardt domains, Japan. J. Math. 15 (1989), 385–414.