JOURNAL BROWSE
Search
Advanced SearchSearch Tips
COMPLEX ANALYSIS AND THE FUNK TRANSFORM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
COMPLEX ANALYSIS AND THE FUNK TRANSFORM
Bailey, T.N.; Eastwood, M.G.; Gover, A.R.; Mason, L.J.;
  PDF(new window)
 Abstract
The Funk transform is defined by integrating a function on the two-sphere over its great circles. We use complex analysis to invert this transform.
 Keywords
Funk;Penrose;Radon;Zoll;
 Language
English
 Cited by
1.
The Penrose transform in split signature, Differential Geometry and its Applications, 2012, 30, 4, 334  crossref(new windwow)
2.
Recovering functions defined on the unit sphere by integration on a special family of sub-spheres, Analysis and Mathematical Physics, 2016  crossref(new windwow)
3.
Scattering amplitudes and BCFW recursion in twistor space, Journal of High Energy Physics, 2010, 2010, 1  crossref(new windwow)
4.
An inversion formula for the spherical transform in $$S^{2}$$ S 2 for a special family of circles of integration, Analysis and Mathematical Physics, 2016, 6, 1, 43  crossref(new windwow)
5.
On minimal immersions in Finsler space, Annals of Global Analysis and Geometry, 2015, 48, 4, 397  crossref(new windwow)
6.
Fiber ball imaging, NeuroImage, 2016, 124, 824  crossref(new windwow)
7.
Trkalian fields: ray transforms and mini-twistors, Journal of Mathematical Physics, 2013, 54, 10, 103512  crossref(new windwow)
 References
1.
Ann. Scuola Norm. Sup.Pisa, 1967. vol.21. pp.31-82

2.
Proc. Lond. Math. Soc., 1904. vol.1. 2, pp.451-458 crossref(new window)

3.
Geom. Dedicata, 1997. vol.67. pp.245-258 crossref(new window)

4.
Radon Transforms and Tomography, Contemp. Math., 2001. vol.278. pp.77-86 crossref(new window)

5.
Math. Proc. Cambridge Philos Soc., 1999. vol.125. pp.67-81 crossref(new window)

6.
Publ. Res. Inst. Math. Sci., 2000. vol.36. pp.337-383 crossref(new window)

7.
J. Funct. Anal., 1996. vol.139. pp.349-382 crossref(new window)

8.
The Penrose Transform and Analytic Cohomology in Representation Theory. Contemp. Math, 1993. vol.154. pp.71-75 crossref(new window)

9.
The Sixteenth Winter School on Geometry and Physics, Srni, Suppl. Rendi. Circ. Mat. Palermo, 1997. vol.46. pp.55-71

10.
Math. Ann., 1913. vol.74. pp.278-300 crossref(new window)

11.
Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat.;translated into English in J. Sov. Math., 1980. vol.16;18. pp.53-226;39-167 crossref(new window)

12.
Monatsh. Math., 1992. vol.113. pp.23-32 crossref(new window)

13.
Adv. Math., 1976. vol.22. pp.85-119 crossref(new window)

14.
Lett. Math. Phys., 1986. vol.12. pp.1-6 crossref(new window)

15.
Amer. J. Math., 1969. vol.91. pp.853-873 crossref(new window)

16.
Duke Math. J., 1938. vol.4. pp.300-322 crossref(new window)

17.
J. Math. Phys., 1969. vol.10. pp.38-39 crossref(new window)

18.
Spinors and Space-time, 1984. vol.1.

19.
Sachs. Akad. Wiss. Leipzig, Math.- Nat. Kl., 1917. vol.69. pp.262-277

20.
Ph.D. dissertation, University of California, Berkeley 1967, Representation Theory and Harmonic Analysis on Semisimple Lie Groups, Math. Surveys and Monographs, 1989. vol.31. pp.223-286

21.
Trans. Roy. Soc. Lond., 1998. vol.A356. pp.3041-3086

22.
Proc. Roy. Soc. Lond., 1992. vol.A438. pp.197-206

23.
N. M. J. Woodhouse, Contour integrals for the ultrahyperbolic wave equation, Proc. Roy. Soc. Lond. A438 (1992), 197–206.