JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON GENERALIZED WEIGHT NASH EQUILIBRIA FOR GENERALIZED MULTIOBJECTIVE GAMES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON GENERALIZED WEIGHT NASH EQUILIBRIA FOR GENERALIZED MULTIOBJECTIVE GAMES
Kim, Won-Kyu; Ding, Xie-Ping;
  PDF(new window)
 Abstract
In this paper, we will introduce the general concepts of generalized multiobjective game, generalized weight Nash equilibria and generalized Pareto equilibria. Next using the fixed point theorems due to Idzik [5] and Kim-Tan [6] , we shall prove the existence theorems of generalized weight Nash equilibria under general hypotheses. And as applications of generalized weight Nash equilibria, we shall prove the existence of generalized Pareto equilibria in non-compact generalized multiobjective game.
 Keywords
generalized multiobjective game;generalized weight Nash equilibrium;generalized Pareto equilibrium;
 Language
English
 Cited by
1.
On Convex Total Bounded Sets in the Space of Measurable Functions, Journal of Function Spaces and Applications, 2012, 2012, 1  crossref(new windwow)
2.
Compact Browder maps and equilibria of abstract economies, Journal of Applied Mathematics and Computing, 2008, 26, 1-2, 555  crossref(new windwow)
 References
1.
Mathematical Methods of Game and Economic Theory, 1979.

2.
Theory and Decision, 1977. vol.8. pp.5-47 crossref(new window)

3.
Method of Operation Research, 1990. vol.60. pp.303-312

4.
J. Optim. Theory Appl., 1989. vol.63. pp.167-189 crossref(new window)

5.
Proc. Amer. Math. Soc., 1988. vol.104. pp.779-784 crossref(new window)

6.
Bull. Austral. Math. Soc., 1992. vol.46. pp.139-148 crossref(new window)

7.
Tecnniques for Multiobjective Decision Making in Systems Management, 1986.

8.
Nihonkai Math. J, 1990. vol.1. pp.209-227

9.
J. Optim. Theory Appl., 1993. vol.79. pp.373-384 crossref(new window)

10.
Appl. Math. Lett., 1991. vol.4. pp.61-63

11.
J. Optim.Theory Appl., 1979. vol.27. pp.147-166 crossref(new window)

12.
Comput. Math. Appl., 1998. vol.35. pp.17-24

13.
Nonlinear Anal. TMA, 1997. vol.29. pp.27-40 crossref(new window)

14.
Comput. Math. Appl., 2000. vol.39. pp.23-30

15.
Comput. Math. Appl., 2000. vol.39. pp.125-134