JOURNAL BROWSE
Search
Advanced SearchSearch Tips
REGULARITY OF WEAK SOLUTIONS OF THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
REGULARITY OF WEAK SOLUTIONS OF THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
Choe, Hi-Jun; Jin, Bum-Ja;
  PDF(new window)
 Abstract
In this paper, we assume a density with integrability on the space (0, T; ) for some and T > 0. Under the assumption on the density, we obtain a regularity result for the weak solutions to the compressible Navier-Stokes equations. That is, the supremum of the density is finite and the infimum of the density is positive in the domain (0, T). Moreover, Moser type iteration scheme is developed for norm estimate for the velocity.
 Keywords
compressible;regularity;generalized solution;
 Language
English
 Cited by
1.
Blow-up criterions of strong solutions to 3D compressible Navier–Stokes equations with vacuum, Advances in Mathematics, 2013, 248, 534  crossref(new windwow)
2.
A blow-up criterion for classical solutions to the compressible Navier-Stokes equations, Science China Mathematics, 2010, 53, 3, 671  crossref(new windwow)
3.
On the blow up criterion for the 2-D compressible Navier-Stokes equations, Czechoslovak Mathematical Journal, 2010, 60, 1, 195  crossref(new windwow)
4.
Blowup criterion for viscous, compressible micropolar fluids with vacuum, Nonlinear Analysis: Real World Applications, 2012, 13, 2, 850  crossref(new windwow)
5.
Blowup Criterion for Viscous Baratropic Flows with Vacuum States, Communications in Mathematical Physics, 2011, 301, 1, 23  crossref(new windwow)
6.
Serrin-Type Criterion for the Three-Dimensional Viscous Compressible Flows, SIAM Journal on Mathematical Analysis, 2011, 43, 4, 1872  crossref(new windwow)
7.
Regularity of weak solutions of compressible isentropic self-gravitating fluid, Nonlinear Analysis: Theory, Methods & Applications, 2016, 147, 274  crossref(new windwow)
8.
A Serrin criterion for compressible nematic liquid crystal flows, Mathematical Methods in the Applied Sciences, 2013, 36, 11, 1363  crossref(new windwow)
 References
1.
J. Math. Fluid Mech., 2001. vol.3. 4, pp.358-392 crossref(new window)

2.
Mathematical mechanics;Adv. Math. Fluid Mech., 2001. pp.73-103

3.
Comment. Math. Univ. Carolin, 2001. vol.42. 1, pp.83-98

4.
Nonlinear analysis and its applications to differential equations; Progr. Nonlinear Differential Equations Apll, 1998. pp.23-35;43

5.
Comm. P.D.E., 1997. vol.22. pp.977-1008 crossref(new window)

6.
An introduction to the Mathematical Theory of the Navier-Stokes Equations, 1994. vol.Ⅰ;Ⅱ.

7.
Springer Tracts in Natural Philosophy, 1994. vol.38;39. crossref(new window)

8.
Kodai Math. Sem. Rep., 1971. vol.23. pp.60-120 crossref(new window)

9.
Oxford Lecture Ser. Math. Appl, 1991. vol.Ⅰ;Ⅱ;10.

10.
J. Math. Pures Appl., 1998. vol.77. pp.585-627 crossref(new window)

11.
Comm. Math. Phys., 1983. vol.89. pp.445-464 crossref(new window)

12.
J. Sov. Math., 1980. vol.14. crossref(new window)

13.
Publ. RIMS. Kyoto Univ., 1977. vol.13. pp.193-253 crossref(new window)

14.
Comm. Math. Phys., 1986. vol.103. pp.259-296 crossref(new window)