JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FOCAL POINT IN THE C0-LORENTZIAN METRIC
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FOCAL POINT IN THE C0-LORENTZIAN METRIC
Choi, Jae-Dong;
  PDF(new window)
 Abstract
In this paper we address focal points and treat manifolds (M, g) whose Lorentzian metric tensors g have a spacelike -hypersurface [10]. We apply Jacobi fields for such manifolds, and check the local length maximizing properties of -geodesics. The condition of maximality of timelike curves(geodesics) passing -hypersurface is studied.ied.
 Keywords
non-smooth Lorentzian metric;focal point;
 Language
English
 Cited by
 References
1.
Trans. Amer. Math. Soc., 1969. vol.145. pp.1-49 crossref(new window)

2.
Monographs and Textbooks in Pure and Applied Mathematics(Second edition), 1996. vol.202.

3.
Selected studies : Physics=astrophysics, mathematics, history of science, 1982. pp.41-56

4.
Gen. Relativity Gravitation, 1981. vol.13. pp.239-255 crossref(new window)

5.
Math. Proc. Camb. Phil. Soc., 1979. vol.85. pp.161-178 crossref(new window)

6.
Ann. Inst. H. Poincare Sect. A (N.S.), 1968. vol.8. pp.327-338

7.
Ph.D. Dissertation, University of Missouri-Columbia, 1991.

8.
Ph.D. Dissertation, University of Missouri-Columbia, 1985.

9.
Pure and Applied Mathematics, 1983. vol.103.

10.
Ph.D.Dissertation, University of Missouri-Columbia, 1982.

11.
Illinois J. Math., 1957. vol.1. pp.370-388

12.
J. Math. Phys., 0000. vol.211980. pp.1423-1431

13.
Generalized Functions Ellis Horwood limited, 1979.

14.
Theoreories relativistes de la gravitation et de l'electromageticame Masson et Cie, 1955.

15.
J. Diff. Eqn., 2002. vol.186. pp.1 crossref(new window)

16.
Gravitation, 1970.

17.
J. Math. Phys., 2000. vol.41. pp.8163 crossref(new window)

18.
Gen. Rel. and Grav., 2003. vol.35.

19.
Proc. Roy. Soc. Lond., 1996. vol.A 300. pp.187-201

20.
The Large Scale Structure of Space-times, 1973.

21.
Proc. Roy. Soc. London Ser., 1970. vol.A 314. pp.529-548 crossref(new window)