JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PLANK PROBLEMS, POLARIZATION AND CHEBYSHEV CONSTANTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
PLANK PROBLEMS, POLARIZATION AND CHEBYSHEV CONSTANTS
Revesz, Szilard-Gy.; Sarantopoulos, Yannis;
  PDF(new window)
 Abstract
In this work we discuss "plank problems" for complex Banach spaces and in particular for the classical spaces. In the case we obtain optimal results and for finite dimensional complex Banach spaces, in a special case, we have improved an early result by K. Ball [3]. By using these results, in some cases we are able to find best possible lower bounds for the norms of homogeneous polynomials which are products of linear forms. In particular, we give an estimate in the case of a real Hilbert space which seems to be a difficult problem. We have also obtained some results on the so-called n-th (linear) polarization constant of a Banach space which is an isometric property of the space. Finally, known polynomial inequalities have been derived as simple consequences of various results related to plank problems.
 Keywords
Plank problem;homogeneous polynomials over normed spaces;linear polarization constants;quasi-monotonous sequences;Banach-Mazur distance;characterization of Banach spaces;local theory of Banach spaces;com-plexification of Banach spaces;weak-star convergent subsequences;
 Language
English
 Cited by
1.
Numerical Plank Problem,;

Kyungpook mathematical journal, 2010. vol.50. 2, pp.289-295 crossref(new window)
2.
POLARIZATION AND UNCONDITIONAL CONSTANTS OF 𝓟(2d*(1,ω)2),;

대한수학회논문집, 2014. vol.29. 3, pp.421-428 crossref(new window)
1.
Homogeneous polynomials and extensions of Hardy-Hilbert's inequality, Mathematische Nachrichten, 2012, 285, 1, 47  crossref(new windwow)
2.
Weak-closure and polarization constant by Gaussian measure, Mathematische Zeitschrift, 2010, 264, 2, 459  crossref(new windwow)
3.
Potential Theoretic Approach to Rendezvous Numbers, Monatshefte für Mathematik, 2006, 148, 4, 309  crossref(new windwow)
4.
Transfinite Diameter, Chebyshev Constant and Energy on Locally Compact Spaces, Potential Analysis, 2008, 28, 3, 241  crossref(new windwow)
5.
Numerical Plank Problem, Kyungpook mathematical journal, 2010, 50, 2, 289  crossref(new windwow)
6.
Linear polarization constants of Hilbert spaces, Journal of Mathematical Analysis and Applications, 2004, 300, 1, 129  crossref(new windwow)
7.
A geometric estimate on the norm of product of functionals, Linear Algebra and its Applications, 2005, 405, 304  crossref(new windwow)
8.
Rendezvous numbers in normed spaces, Bulletin of the Australian Mathematical Society, 2005, 72, 03, 423  crossref(new windwow)
9.
Plank type problems for polynomials on Banach spaces, Journal of Mathematical Analysis and Applications, 2012, 396, 2, 528  crossref(new windwow)
10.
POLARIZATION AND UNCONDITIONAL CONSTANTS OF 𝓟(2d*(1,ω)2), Communications of the Korean Mathematical Society, 2014, 29, 3, 421  crossref(new windwow)
11.
The dth linear polarization constant of Rd, Journal of Functional Analysis, 2008, 255, 10, 2861  crossref(new windwow)
 References
1.
Polarization constants for products of linear functionals over $\mathbb{R}^2$ and $\mathbb{C}^2$ and Chebyshev constants of the unit sphere, 2002.

2.
Linear Algebra Appl., 1998. vol.285. pp.107-114 crossref(new window)

3.
Invent. Math., 1991. vol.104. pp.535-543 crossref(new window)

4.
Bull. London Math. Soc., 2001. vol.33. pp.433-442 crossref(new window)

5.
Proc. Amer. Math. Soc., 1951. vol.2. pp.990-993 crossref(new window)

6.
Math. Proc. Cambridge Philos. Soc., 1998. vol.124. pp.395-408 crossref(new window)

7.
Springer Monographs in Mathematics, 1999.

8.
Math. Z., 1923. vol.17. pp.228-249 crossref(new window)

9.
Summing and nuclear norms in Banach space theory, 1987.

10.
Courant Aniversary Volume, 1948. pp.187-204

11.
Private communication, 2002.

12.
Bull. London Math. Soc., 1999. vol.31. pp.269-278 crossref(new window)

13.
Studia Math., 1978. vol.63. pp.207-212

14.
J. Math. Mech., 1966. vol.16. pp.127-134

15.
Inequalities: selecta of Elliot H. Lieb., 2002.

16.
The university of Texas at Austin, Txas Functional Analysis Seminar, 1983. pp.167-176

17.
Mathematika, 1960. vol.7. pp.98-100 crossref(new window)

18.
Bull. Amer. Math. Soc., 1963. vol.69. pp.494-496 crossref(new window)

19.
Proc. Amer. Math. Soc., 1964. vol.15. pp.967-973 crossref(new window)

20.
Private communication, 1996. pp.967-973

21.
Trans. Amer. Math. Soc., 1962. vol.104. pp.510-515 crossref(new window)

22.
Amer. Math. Monthly, 1965. vol.72. pp.577-591 crossref(new window)

23.
Funktsional Anal. i Prilozhen Appl., 1971. vol.5. pp.28-37

24.
Engl. transl.: Funct Anal. Appl., 1971. vol.5. pp.288-295

25.
Studia Math., 1999. vol.134. pp.1-33

26.
The volume of convex bodies and Banach space geometry, 1989.

27.
Problems and Theorems in Analysis I(Reprint of the 1st ed), 1972.

28.
Math. Proc. Cambridge Philos. Soc., 1986. vol.99. pp.263-271 crossref(new window)

29.
Ph.D. thesis. Brunel University, 1987. crossref(new window)

30.
J. Math. Anal. Appl., 1998. vol.221. pp.698-711 crossref(new window)

31.
Tohoku Math. J., 1938. vol.44. pp.302-318

32.
Private communication, 0000.

33.
J. Australian Math. Soc. Ser., 1989. vol.A47. pp.466-482

34.
Cambridge stud. Adv. Math., 1991. vol.25.