JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FIXED POINT THEOREMS FOR INFINITE DIMENSIONAL HOLOMORPHIC FUNCTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FIXED POINT THEOREMS FOR INFINITE DIMENSIONAL HOLOMORPHIC FUNCTIONS
Harris, Lwarence-A.;
  PDF(new window)
 Abstract
This talk discusses conditions on the numerical range of a holomorphic function defined on a bounded convex domain in a complex Banach space that imply that the function has a unique fixed point. In particular, extensions of the Earle-Hamilton Theorem are given for such domains. The theorems are applied to obtain a quantitative version of the inverse function theorem for holomorphic functions and a distortion form of Cartan`s unique-ness theorem.
 Keywords
Banach space;Frechet derivative;convex domain;holo-morphic numerical range;Bloch radii;Cartan ununiqueness theorem;
 Language
English
 Cited by
1.
Abel averages and holomorphically pseudo-contractive maps in Banach spaces, Journal of Mathematical Analysis and Applications, 2015, 423, 2, 1580  crossref(new windwow)
 References
1.
J. Math. Anal. Appl., 1996. vol.203. pp.38-54 crossref(new window)

2.
London Math. Soc. Lecture Note Ser., 1971. vol.2.

3.
London Math. Soc. Lecture Note Ser., 1973. vol.10.

4.
Abstr. Appl. Anal., 2003. 6, pp.367-373

5.
Complex Analysis in Locally Convex Spaces, 1981.

6.
Oxford Math. Monogr., 1989.

7.
Springer Monographs in Mathematics, 1999.

8.
Linear Operators, 1957.

9.
Global Analysis, Proc. Symp. Pure Math., 1970. vol.16. pp.61-65

10.
London Math. Soc. Lecture Note Ser., 2003. vol.299. pp.364-384

11.
Hyperbolic Geometry and Nonexpansive Mappings, 1984.

12.
Nonlinear Analysis, 1980. vol.4. pp.1011-1021 crossref(new window)

13.
Pacific J. Math., 1971. vol.38. pp.635-639 crossref(new window)

14.
Amer. J. Math., 1971. vol.93. pp.1005-1019 crossref(new window)

15.
Monatsh. Math., 1977. vol.83. pp.9-23 crossref(new window)

16.
Advances in Holomorphy, 1979. pp.345-406

17.
Abstr. Appl. Anal., 2003. 5, pp.261-274

18.
J. Anal. Math., 2000. vol.82. pp.221-232 crossref(new window)

19.
Proc. Amer. Math. Soc., 1976. vol.60. pp.95-105 crossref(new window)

20.
Amer. Math. Soc. Colloq. Publ., 1957. vol.31.

21.
Proc. Imp. Acad.Tokyo, 1943. vol.19. pp.269-271 crossref(new window)

22.
Integral Equations Operator Theory, 1995. vol.22. pp.305-316 crossref(new window)

23.
Nonlinear Anal., 1984. vol.8. pp.417-419 crossref(new window)

24.
Nonlinear Anal., 1985. vol.9. pp.601-604 crossref(new window)

25.
Handbook of Metric Fixed Point Theory, 2001. pp.437-515

26.
Trans. Amer. Math. Soc., 1961. vol.100. pp.29-43 crossref(new window)

27.
Conformal Mapping, 1952.

28.
Abstr. Appl. Anal., 1996. vol.1. pp.1-44 crossref(new window)

29.
Proc. Amer. Math. Soc., 1980. vol.79. pp.32-34 crossref(new window)

30.
The Theory of Functions(2nd ed.), 1939.