JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PRECONDITIONING FOR THE p-VERSION BOUNDARY ELEMENT METHOD IN THREE DIMENSIONS WITH TRIANGULAR ELEMENTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
PRECONDITIONING FOR THE p-VERSION BOUNDARY ELEMENT METHOD IN THREE DIMENSIONS WITH TRIANGULAR ELEMENTS
Cao, Wei-Ming; Guo, Benqi;
  PDF(new window)
 Abstract
A preconditioning algorithm is developed in this paper for the iterative solution of the linear system of equations resulting from the p-version boundary element approximation of the three dimensional integral equation with hypersingular operators. The preconditioner is derived by first making the nodal and side basis functions locally orthogonal to the element internal bases, and then by decoupling the nodal and side bases from the internal bases. Its implementation consists of solving a global problem on the wire-basket and a series of local problems defined on a single element. Moreover, the condition number of the preconditioned system is shown to be of order . This technique can be applied to discretization with triangular elements and with general basis functions.
 Keywords
p-version boundary element method;hypersingular integral equation;iterative methods;preconditioning.;
 Language
English
 Cited by
1.
ON A FAST ITERATIVE METHOD FOR APPROXIMATE INVERSE OF MATRICES,;

대한수학회논문집, 2013. vol.28. 2, pp.407-418 crossref(new window)
1.
ON A FAST ITERATIVE METHOD FOR APPROXIMATE INVERSE OF MATRICES, Communications of the Korean Mathematical Society, 2013, 28, 2, 407  crossref(new windwow)
2.
An extension theorem for polynomials on triangles, Calcolo, 2008, 45, 2, 69  crossref(new windwow)
3.
Optimal error estimate of a projection based interpolation for the p-version approximation in three dimensions, Computers & Mathematics with Applications, 2005, 50, 3-4, 359  crossref(new windwow)
4.
An iterative substructuring method for thehp-version of the BEM on quasi-uniform triangular meshes, Numerical Methods for Partial Differential Equations, 2007, 23, 4, 879  crossref(new windwow)
 References
1.
Numer. Math., 2000. vol.85. pp.343-366 crossref(new window)

2.
SIAM J. Numer. Anal., 1991. vol.28. pp.624-661 crossref(new window)

3.
SIAM J. Numer. Anal., 1981. vol.18. pp.515-545 crossref(new window)

4.
Interpolation Spaces: an Introductions, 1976.

5.
PhD Thesis, Courant Institute of Mathematical Science, 1997.

6.
SIAM J. Numer. Anal., 1986. vol.23. pp.1097-1120 crossref(new window)

7.
Math. Comp., 1986. vol.47. pp.103-134 crossref(new window)

8.
SIAM J. Math. Anal., 1988. vol.19. pp.613-626 crossref(new window)

9.
In First International Symposium on Domain Decomposition Methods for Partial Differential Equations, 1988.

10.
Contemp. Math., 1994. vol.157.

11.
Numer. Math., 1998. vol.79. pp.371-396 crossref(new window)

12.
SIAM J. Sci. Comput., 1999. vol.20. pp.739-749 crossref(new window)

13.
Math. Comput., 1998. vol.67. pp.501-518 crossref(new window)

14.
Non-homogeneous boundary value problems and applications, 1972. vol.II.

15.
Proceeding of the Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, 1990. pp.202-223

16.
C. R. Acad. Sci. Paris, Serie I, 1989. vol.309. pp.463-468

17.
SIAM J. Numer. Anal., 1996. vol.33. pp.1303-1335 crossref(new window)

18.
Finite Element Analysis, 1991.

19.
In Recent advances in numerical methods and applications, (Sofia, 1998), 1999. vol.II. pp.112-123

20.
Appl. Anal., 1996. vol.60. pp.63-84 crossref(new window)