JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON GENERALIZED FINSLER STRUCTURES WITH A VANISHING hυ-TORSION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON GENERALIZED FINSLER STRUCTURES WITH A VANISHING hυ-TORSION
Ichijyo, Yoshihiro; Lee, Il-Yong; Park, Hong-Suh;
  PDF(new window)
 Abstract
A canonical Finsler connection Nr is defined by a generalized Finsler structure called a (G, N)-structure, where G is a generalized Finsler metric and N is a nonlinear connection given in a differentiable manifold, respectively. If NT is linear, then the(G, N)-structure has a linearity in a sense and is called Berwaldian. In the present paper, we discuss what it means that NT is with a vanishing hv-torsion: and introduce the notion of a stronger type for linearity of a (G, N)-structure. For important examples, we finally investigate the cases of a Finsler manifold and a Rizza manifold.
 Keywords
generalized Finsler structures;hv-torsion;regular (G, N)-structure;Berwaldian (G, N)-structure;strongly Berwaldian structure;locally Min-kowskian metric;(L, N)-structure;Rizza manifold;intrinsic (G, N)-structure;
 Language
English
 Cited by
1.
Horizontal Laplace Operator in Real Finsler Vector Bundles, Acta Mathematica Scientia, 2008, 28, 1, 128  crossref(new windwow)
2.
Formulas of Gauss-Ostrogradskii Type on Real Finsler Manifolds, Acta Mathematica Scientia, 2008, 28, 2, 383  crossref(new windwow)
 References
1.
An Stiint. Univ. Al.I. Cuza Iasi, 1984. vol.30. pp.69-73

2.
Rev. Mat. Univ. Parma(4), 1988. vol.14. pp.1-28

3.
J. Math. Tokushima Univ., 1991. pp.13-25

4.
Res. Bull. Toku-shima Bunri Univ., 1999. vol.57. pp.9-16

5.
Res. Bull. Toku-shima Bunri Univ., 2000. vol.59. pp.11-18

6.
Res. Bull. Toku-shima Bunri Univ., 2001. vol.61. pp.49-62

7.
J. Math. Kyoto Univ., 1983. vol.23. pp.219-224

8.
Foundations of Finsler geometry and special Finsler spaces, 1983. pp.219-224

9.
J. Math. Kyoto Univ., 1982. vol.22. pp.323-332

10.
Atti Acad. Naz. Lincei Rend., 1962. vol.33. pp.271-275