JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON GENERALIZED FINSLER STRUCTURES WITH A VANISHING hυ-TORSION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON GENERALIZED FINSLER STRUCTURES WITH A VANISHING hυ-TORSION
Ichijyo, Yoshihiro; Lee, Il-Yong; Park, Hong-Suh;
  PDF(new window)
 Abstract
A canonical Finsler connection Nr is defined by a generalized Finsler structure called a (G, N)-structure, where G is a generalized Finsler metric and N is a nonlinear connection given in a differentiable manifold, respectively. If NT is linear, then the(G, N)-structure has a linearity in a sense and is called Berwaldian. In the present paper, we discuss what it means that NT is with a vanishing hv-torsion: ${P^{i}}\;_{jk}\;
 Keywords
generalized Finsler structures;hv-torsion;regular (G, N)-structure;Berwaldian (G, N)-structure;strongly Berwaldian structure;locally Min-kowskian metric;(L, N)-structure;Rizza manifold;intrinsic (G, N)-structure;
 Language
English
 Cited by
1.
Formulas of Gauss-Ostrogradskii Type on Real Finsler Manifolds, Acta Mathematica Scientia, 2008, 28, 2, 383  crossref(new windwow)
2.
Horizontal Laplace Operator in Real Finsler Vector Bundles, Acta Mathematica Scientia, 2008, 28, 1, 128  crossref(new windwow)
 References
1.
An Stiint. Univ. Al.I. Cuza Iasi, 1984. vol.30. pp.69-73

2.
Rev. Mat. Univ. Parma(4), 1988. vol.14. pp.1-28

3.
J. Math. Tokushima Univ., 1991. pp.13-25

4.
Res. Bull. Toku-shima Bunri Univ., 1999. vol.57. pp.9-16

5.
Res. Bull. Toku-shima Bunri Univ., 2000. vol.59. pp.11-18

6.
Res. Bull. Toku-shima Bunri Univ., 2001. vol.61. pp.49-62

7.
J. Math. Kyoto Univ., 1983. vol.23. pp.219-224

8.
Foundations of Finsler geometry and special Finsler spaces, 1983. pp.219-224

9.
J. Math. Kyoto Univ., 1982. vol.22. pp.323-332

10.
Atti Acad. Naz. Lincei Rend., 1962. vol.33. pp.271-275