JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON OPERATORS WITH AN ABSOLUTE VALUE CONDITION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON OPERATORS WITH AN ABSOLUTE VALUE CONDITION
Jeon, In-Ho; DUGGAL, B.P.;
  PDF(new window)
 Abstract
Let (equation omitted) denote the class of bounded linear Hilbert space operators with the property that . In this paper we show that (equation omitted)-operators are finitely ascensive and that, for non-zero operators A and B, A (equation omitted) B is in (equation omitted) if and only if A and B are in (equation omitted). Also, it is shown that if A is an operator such that p(A) is in (equation omitted) for a non-trivial polynomial p, then Weyl`s theorem holds for f(A), where f is a function analytic on an open neighborhood of the spectrum of A.
 Keywords
class A operator;polynomially class A operator;tensor product;Weyl′s theorem.;
 Language
English
 Cited by
1.
ON WEYL'S THEOREM FOR QUASI-CLASS A OPERATORS,;;;

대한수학회지, 2006. vol.43. 4, pp.899-909 crossref(new window)
2.
WEYL'S THEOREM AND TENSOR PRODUCT FOR OPERATORS SATISFYING T*k|T2|Tk≥T*k|T|2Tk,;

대한수학회지, 2010. vol.47. 2, pp.351-361 crossref(new window)
3.
ON SPECTRAL CONTINUITIES AND TENSOR PRODUCTS OF OPERATORS,;

충청수학회지, 2011. vol.24. 1, pp.113-119
4.
CONTINUITY OF THE SPECTRUM ON A CLASS A(κ),;;

Korean Journal of Mathematics, 2013. vol.21. 1, pp.75-80 crossref(new window)
1.
On -paranormal contractions and properties for -class A operators, Linear Algebra and its Applications, 2012, 436, 5, 954  crossref(new windwow)
2.
On operators satisfying T∗∣T2∣T⩾T∗∣T∣2T, Linear Algebra and its Applications, 2006, 418, 2-3, 854  crossref(new windwow)
3.
On Properties of ClassA(n)andn-Paranormal Operators, Abstract and Applied Analysis, 2014, 2014, 1  crossref(new windwow)
4.
CONTINUITY OF THE SPECTRUM ON A CLASS A(κ), Korean Journal of Mathematics, 2013, 21, 1, 75  crossref(new windwow)
5.
On subscalarity of some 2×2 class A operator matrices, Linear Algebra and its Applications, 2013, 438, 3, 1322  crossref(new windwow)
6.
Class A composition operators on H 2, Journal of Mathematical Analysis and Applications, 2016, 435, 1, 461  crossref(new windwow)
 References
1.
Integr. Equat. Oper. Th., vol.13. pp.307-315 crossref(new window)

2.
Acta Sci. Math. (Szeged), vol.33. pp.169-178

3.
Proc. Amer. Math. Soc., vol.17. pp.162-166 crossref(new window)

4.
Indiana Univ. Math. J., vol.20. pp.529-544 crossref(new window)

5.
Proc. Amer. Math. Soc., vol.131. pp.3199-3111

6.
Bull. Austral. Math. Soc., vol.21. pp.161-168 crossref(new window)

7.
Glasg. Math. J., vol.42. pp.371-381 crossref(new window)

8.
Comment. Math. Prace Mat., vol.40. pp.49-56

9.
Taylor & Francis,

10.
Sci. Math., vol.1. pp.389-403

11.
Proc. Amer. Math. Soc., vol.128. pp.2291-2296 crossref(new window)

12.
Invertibility and Singularity for Bounded Linear Operators,

13.
Trans. Amer. Math. Soc., vol.349. pp.2115-2124 crossref(new window)

14.
Acta Math. Sinica (N.S.), vol.9. pp.195-202 crossref(new window)

15.
Tohoku Math. J., vol.18. pp.410-413 crossref(new window)

16.
Math. Inequal. Appl., vol.2. pp.569-578

17.
Integr. Equat. Oper. Th., vol.39. pp.214-221 crossref(new window)

18.
Pacific J. Math., vol.157. pp.323-336

19.
Proc. Amer. Math. Soc., vol.125. pp.1425-1434 crossref(new window)

20.
An Introduction to Local Spectral Theory London Math. Soc. Monographs (N.S.),

21.
Glasg. Math. J., vol.38. pp.61-64 crossref(new window)

22.
Illinois J. Math., vol.21. pp.84-90

23.
J. Math. Res. Exposition, vol.7. pp.591-594

24.
Lecture Notes in Mathematics, vol.247.

25.
Proc. Amer. Math. Soc., vol.124. pp.435-440

26.
Math. Inequal. Appl., vol.4. pp.143-150

27.
Integr. Equat. Oper. Th.,

28.
Nihonkai Math. J., vol.14. pp.121-123

29.
Spectral Theory of Hyponormal Operators,