JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FOURIER INVERSION OF DISTRIBUTIONS ON THE SPHERE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FOURIER INVERSION OF DISTRIBUTIONS ON THE SPHERE
A, Francisco Javier Gonzalez Vieli;
  PDF(new window)
 Abstract
We show that the Fourier-Laplace series of a distribution on the sphere is uniformly Cesaro-summable to zero on a neighborhood of a point if and only if this point does not belong to the support of the distribution. Similar results on the ball and on the real projective space are also proved.
 Keywords
distribution;sphere;Fourier-Laplace series;Cesaro summability;
 Language
English
 Cited by
1.
Abel means for orthogonal expansions of distributions on spheres, balls and simplices, Journal of Mathematical Analysis and Applications, 2016, 433, 1, 496  crossref(new windwow)
 References
1.
Ann. Global Anal. Geom., 2000. vol.18. pp.347-369 crossref(new window)

2.
Geometric Applications of Fourier Series and Spherical Harmonics, 1996.

3.
Divergent Series, 1949.

4.
Ensembles parfaits et series trigonometriques, 1963.

5.
Distributions, analyse de Fourier, operateurs aux derivees partielles, 1972. vol.1.

6.
J. Math. Pures Appl., 1924. vol.3. pp.107-187

7.
Introduction to Fourier Analysis on Euclidean Spaces, 1971.

8.
Collected Papers, 1982. vol.2. pp.401-477

9.
Orthogonal polynomials, 1959.

10.
Studia Math., 1966. vol.26. pp.143-154

11.
Math. Proc. Cambridge Philos. Soc., 2001. vol.131. pp.139-155