JOURNAL BROWSE
Search
Advanced SearchSearch Tips
OPTIMALITY CONDITIONS AND DUALITY MODELS FOR MINMAX FRACTIONAL OPTIMAL CONTROL PROBLEMS CONTAINING ARBITRARY NORMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
OPTIMALITY CONDITIONS AND DUALITY MODELS FOR MINMAX FRACTIONAL OPTIMAL CONTROL PROBLEMS CONTAINING ARBITRARY NORMS
G. J., Zalmai;
  PDF(new window)
 Abstract
Both parametric and parameter-free necessary and sufficient optimality conditions are established for a class of nondiffer-entiable nonconvex optimal control problems with generalized fractional objective functions, linear dynamics, and nonlinear inequality constraints on both the state and control variables. Based on these optimality results, ten Wolfe-type parametric and parameter-free duality models are formulated and weak, strong, and strict converse duality theorems are proved. These duality results contain, as special cases, similar results for minmax fractional optimal control problems involving square roots of positive semi definite quadratic forms, and for optimal control problems with fractional, discrete max, and conventional objective functions, which are particular cases of the main problem considered in this paper. The duality models presented here contain various extensions of a number of existing duality formulations for convex control problems, and subsume continuous-time generalizations of a great variety of similar dual problems investigated previously in the area of finite-dimensional nonlinear programming.
 Keywords
minmax fractional optimal control problems;constraints;arbitrary norms;optimality conditions;duality models;duality theorems;
 Language
English
 Cited by
1.
A sixth bibliography of fractional programming, Optimization, 2006, 55, 4, 405  crossref(new windwow)
 References
1.
D. J. Ashton, and D. R. Atkins, Multicriteria programming for financial planning, J. Oper. Res. Soc. Japan 30 (1979), 259–270

2.
I. Barrodale, Best rational approximation and strict quasiconvexity, SIAM J. Numer. Anal. 10 (1973), 8–12 crossref(new window)

3.
I. Barrodale, M. J. D. Powell and F. D. K. Roberts, The differential correction algorithm for rational ${\ell}_{\infty}$-approximation, SIAM J. Numer. Anal. 9 (1972), 493–504. crossref(new window)

4.
S. Chandra, B. D. Craven and I. Husain, A class of nondifferentiable control problems, J. Optim. Theory Appl. 56 (1985), 227–243 crossref(new window)

5.
S. Chandra, B. D. Craven and I. Husain, Continuous programming containing arbitrary norms, J. Aust. Math. Soc. 39 (1985), 28–38 crossref(new window)

6.
S. Chandra, B. D. Craven and I. Husain, A class of nondifferentiable continuous programming problems, J. Math. Anal. Appl. 107 (1985), 122–131. crossref(new window)

7.
A. Charnes and W. W. Cooper, Goal programming and multiobjective optimization, part 1, European J. Oper. Res. 1 (1977), 39–54. crossref(new window)

8.
B. D. Craven, (1988) Fractional Programming, Heldermann Verlag, Berlin, 1988

9.
V. F. Demyanov and V. N. Malozemov, Introduction to Minimax, Wiley, New York, 1974

10.
W. Dinkelbach, On nonlinear fractional programming, Management Sci. 13 (1967), 492–498 crossref(new window)

11.
I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976

12.
R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985

13.
J. S. H. Kornbluth, A survey of goal programming, Omega 1 (1973), 193–205 crossref(new window)

14.
W. Krabs, Dualität bei diskreter rationaler Approximation, Internat. Ser. Numer. Math. 7 (1967), 33–41

15.
J. V. Outrata and J. Jarusek, Duality in mathematical programming and optimal control, Kybernetika 20 (1984), 1–119

16.
R. T. Rockafellar, Conjugate functions in optimal control and the calculus of variations, J. Math. Anal. Appl. 32 (1970), 174–222 crossref(new window)

17.
R. T. Rockafellar, Duality in optimal control, Lecture Notes in Mathematics, Vol. 680, Springer-Verlag, Berlin, 1978, pp. 219–257

18.
I. M. Stancu-Minasian, Fractional Programming : Theory, Methods, and Applications, Kluwer Academic Publishers, Boston, 1977

19.
M. B. Subrahmanyam, On applications of control theory to integral inequalities, J. Math. Anal. Appl. 77 (1980), 47–59 crossref(new window)

20.
M. B. Subrahmanyam, Optimal Control with a Worst-Case Performance Criterion and Applications, Lecture Notes in Control and Inform. Sci. 145, Springer-Verlag, Berlin, 1990

21.
M. B. Subrahmanyam, Synthesis of finite-interval H_{\infty} controllers by state-space methods, J. Guidance Control Dynamics 13 (1990), 624–627 crossref(new window)

22.
M. B. Subrahmanyam, Optimal disturbance rejection and performance robustness in linear systems, J. Math. Anal. Appl. 164 (1992), 130–150 crossref(new window)

23.
J. Von Neumann, A model of general economic equilibrium, Rev. Econom. Stud. 13 (1945), 1–9 crossref(new window)

24.
J. Werner, Duality in generalized fractional programming, Internat. Ser. Numer. Math. 84 (1988), 341–351

25.
G. J. Zalmai, A transposition theorem with applications to optimal control problems, Optimization 29 (1989), 265–279 crossref(new window)

26.
G. J. Zalmai, Optimality conditions and duality models for a class of nonsmooth constrained fractional variational problems, Optimization 30 (1994), 15–51 crossref(new window)

27.
G. J. Zalmai, Proper efficiency conditions and duality models for a class of constrained multiobjective fractional optimal control problems containing arbitrary norms, J. Optim. Theory Appl. 90 (1996), 435–456 crossref(new window)

28.
G. J. Zalmai, Optimality conditions and duality models for a class of nonsmooth constrained fractional optimal control problems, J. Math. Anal. Appl. 210 (1997), 114–149 crossref(new window)

29.
G. J. Zalmai, Saddle-point-type optimality conditions and Lagrangian-type duality for a class of constrained generalized fractional optimal control problems, Optimization 44 (1998), 351–372 crossref(new window)

30.
G. J. Zalmai, Optimality principles and duality models for a class of continuous-time generalized fractional programming problems with operator constraints, J. Stat. Manag. Syst. 1 (1998), 61–100