JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONVERGENCE OF WEIGHTED SUMS FOR DEPENDENT RANDOM VARIABLES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONVERGENCE OF WEIGHTED SUMS FOR DEPENDENT RANDOM VARIABLES
Liang, Han-Yang; Zhang, Dong-Xia; Baek, Jong-Il;
  PDF(new window)
 Abstract
We discuss in this paper the strong convergence for weighted sums of negative associated (in abbreviation: NA) arrays. Meanwhile, the central limit theorem for weighted sums of NA variables and linear process based on NA variables is also considered. As corollary, we get the results on iid of Li et al. ([10]) in NA setting.
 Keywords
strong convergence;weighted sum;Cesaro mean;central limit theorem;negatively associated random variable.;
 Language
English
 Cited by
1.
On Convergence of Weighted Sums of LNQD Random,;;

Communications for Statistical Applications and Methods, 2012. vol.19. 5, pp.647-654 crossref(new window)
2.
ON ALMOST SURE CONVERGENCE FOR WEIGHTED SUMS OF LNQD RANDOM VARIABLES,;;;

호남수학학술지, 2012. vol.34. 2, pp.241-252 crossref(new window)
1.
Asymptotics of estimators in semi-parametric model under NA samples, Journal of Statistical Planning and Inference, 2006, 136, 10, 3362  crossref(new windwow)
2.
ON ALMOST SURE CONVERGENCE FOR WEIGHTED SUMS OF LNQD RANDOM VARIABLES, Honam Mathematical Journal, 2012, 34, 2, 241  crossref(new windwow)
3.
An almost sure central limit theorem for products of sums under association, Statistics & Probability Letters, 2008, 78, 4, 367  crossref(new windwow)
4.
Empirical likelihood for partially linear models under negatively associated errors, Journal of Systems Science and Complexity, 2016, 29, 4, 1145  crossref(new windwow)
5.
Convergence of Weighted Linear Process forρ-Mixing Random Variables, Discrete Dynamics in Nature and Society, 2007, 2007, 1  crossref(new windwow)
6.
On Convergence of Weighted Sums of LNQD Random, Communications for Statistical Applications and Methods, 2012, 19, 5, 647  crossref(new windwow)
7.
An Extension of the Almost Sure Central Limit Theorem for Products of Sums Under Association, Communications in Statistics - Theory and Methods, 2013, 42, 3, 478  crossref(new windwow)
8.
An almost sure central limit theorem for products of sums of partial sums under association, Journal of Mathematical Analysis and Applications, 2009, 355, 2, 708  crossref(new windwow)
9.
Asymptotic normality and strong consistency of LS estimators in the EV regression model with NA errors, Statistical Papers, 2013, 54, 1, 193  crossref(new windwow)
10.
Evaluating prognostic accuracy of biomarkers in nested case-control studies, Biostatistics, 2012, 13, 1, 89  crossref(new windwow)
 References
1.
K. Alam and K. M. L. Saxena, Positive dependence in multivariate distributions, Comm. Statist. Theory Methods A10 (1981), 1183–1196. crossref(new window)

2.
P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968

3.
Z. W. Cai and G. G. Roussas, Berry-Esseen bounds for smooth estimator of distribution function under association, Nonparametric Statist. 11 (1999), 79–106 crossref(new window)

4.
Y. S. Chow and T. L. Lai, Limiting behavior of weighted sums of independent random variables, Ann. Probab. 1 (1973), 810–824 crossref(new window)

5.
Y. Deniel and Y. Derriennic, Sur la convergence presque sure, au sens de Cesàro d'ordre $\alpha$, 0 < $\alpha$ < 1, de variables aléatoires et indépendantes et identiquement distribuées, Probab. Theory Related Fields 79 (1988), 629–636. crossref(new window)

6.
P. Hall and C. C. Heyde, Martingale Limit Theory and Its Applications, New York, Academic Press, 1980

7.
B. Heinkel, An infinite-dimensional law of large numbers in Cesaro's sense, J. Theoret. Probab. 3 (1990), 533–546 crossref(new window)

8.
K. Joag-Dev and F. Proschan, Negative association of random variables with applications, Ann. Statist. 11 (1983), 286–295 crossref(new window)

9.
T.-S. Kim and J.-I. Baek, A central limit theorem for stationary linear processes generated by linearly positively quadrant dependent process, Statist. Probab. Lett. 51 (2001), 299–305 crossref(new window)

10.
D. L. Li, M. B. Rao, T. F. Jiang and X. C. Wang, Complete convergence and almost sure conver-gence of weighted sums of random variables, J. Theoret. Probab. 8 (1995), 49–76 crossref(new window)

11.
H. Y. Liang and C. Su, Complete convergence for weighted sums of NA sequences, Statist. Probab. Lett. 45 (1999), 85–95 crossref(new window)

12.
H. Y. Liang, Complete convergence for weighted sums of negatively associated random variables, Statist. Probab. Lett. 48 (2000), 317–325 crossref(new window)

13.
H. Y. Liang and B. Y. Jing, Asymptotic properties for estimates of nonparametric regression models based on negatively associated sequences, Submitted, 2002

14.
G. G. Lorentz, Borel and Banach properties of methods of summation, Duke Math. J. 22 (1955), 129–141 crossref(new window)

15.
P. Matula, A note on the almost sure convergence of sums of negatively dependences random variables, Statist. Probab. Lett. 15 (1992), 209-213. crossref(new window)

16.
D. S. Mitrinovic, Analytic Inequalities, New York, Springer, 1970.

17.
M. Peligrad and S. Utev, Central limit theorem for linear processes, Ann. Probab. 25 (1997), no. 1, 443-456. crossref(new window)

18.
P. C. B. Phillips and V. Solo, Asymptotics for linear processes, Ann. Statist. 20 (1992), 971-1001. crossref(new window)

19.
G. G. Roussas, Asymptotic normality of random fields of positively or negatively associated processes, J. Multivariate Anal. 50 (1994), 152-173. crossref(new window)

20.
Q. M. Shao, A comparison theorem on maximum inequalities between negatively associated and independent random variables, J. Theoret. Probab. 13 (2000), 343-356. crossref(new window)

21.
Q. M. Shao and C. Su, The law of the iterated logarithm for negatively associated random variables, Stochastic Process. Appl. 83 (1999), 139-148. crossref(new window)

22.
W. F. Stout, Almost Sure Convergence, Academic Press, New York, 1974

23.
C. Su, L. C. Zhao and Y. B. Wang, Moment inequalities and week convergence for negatively associated sequences, Sci. China Ser. A 40 (1997), 172-182. crossref(new window)