JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON ROTATION SURFACES IN THE MINKOWSKI 3-DIMENSIONAL SPACE WITH POINTWISE 1-TYPE GAUSS MAP
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON ROTATION SURFACES IN THE MINKOWSKI 3-DIMENSIONAL SPACE WITH POINTWISE 1-TYPE GAUSS MAP
Athoumane Niang;
  PDF(new window)
 Abstract
In this paper, we study rotation surfaces in the Minkowski 3-dimensional space with pointwise 1-type Gauss map and obtain by the use of the concept of pointwise finite type Gauss map, a characterization theorem concerning rotation surfaces and constancy of the mean curvature of certain open subsets on these surfaces.
 Keywords
Gauss map;Laplacian;pointwise 1-type;
 Language
English
 Cited by
1.
SURFACES OF REVOLUTION SATISFYING ΔIIG = f(G + C),;;

대한수학회보, 2013. vol.50. 4, pp.1061-1067 crossref(new window)
2.
BOOST INVARIANT SURFACES WITH POINTWISE 1-TYPE GAUSS MAP IN MINKOWSKI 4-SPACE E41,;;

대한수학회보, 2014. vol.51. 6, pp.1863-1874 crossref(new window)
1.
General rotational surfaces with pointwise 1-type Gauss map in pseudo-Euclidean space E 2 4, Indian Journal of Pure and Applied Mathematics, 2015, 46, 1, 107  crossref(new windwow)
2.
BOOST INVARIANT SURFACES WITH POINTWISE 1-TYPE GAUSS MAP IN MINKOWSKI 4-SPACE E41, Bulletin of the Korean Mathematical Society, 2014, 51, 6, 1863  crossref(new windwow)
3.
SURFACES OF REVOLUTION SATISFYING ΔIIG = f(G + C), Bulletin of the Korean Mathematical Society, 2013, 50, 4, 1061  crossref(new windwow)
4.
Helicoidal surfaces satisfying $${\Delta ^{II}\mathbf{G}=f(\mathbf{G}+C)}$$ Δ II G = f ( G + C ), Journal of Geometry, 2016, 107, 3, 523  crossref(new windwow)
 References
1.
L. J. Alias, A. Ferrandez, P. Lucas and M. A. Meronno, On the Gauss map of B-scrolls, Tsukuba J. Math. 22 (1998), 317–377.

2.
B.-Y. Chen, submanifolds of finite type, Soochow J. Math. 9 (1987), 65–81.

3.
B.-Y. Chen, Total mean curvature and submanifolds of finite type, World Scientific, Singapore, 1984.

4.
B.-Y. Chen and P. Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc. 35 (1987), 161–186. crossref(new window)

5.
S. M. Choi, On the Gauss map of ruled surfaces in a three-dimensional Minkowski space, Tsukuba J. Math. 19 (1995), 285–304.

6.
M. Choi and Y. H. Kim, Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 38 (2001), no. 4, 753–761.

7.
Jun-ichi Hano and K. Nomizu, On Isometric immersions of the hyperbolic plane into the Lorentz-Minkowski space and the Monge-Ampre equation of a certain type, Math. Ann. 262 (1983), 245–253. crossref(new window)

8.
Y. H. Kim and D. W. Yoon, Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys. 34 (2000), 191–205. crossref(new window)

9.
A. Niang, Rotation surfaces with pointwise 1-type Gauss map (submitted for publication in 2003).