JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LIMIT THEOREMS FOR PARTIAL SUM PROCESSES OF A GAUSSIAN SEQUENCE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
LIMIT THEOREMS FOR PARTIAL SUM PROCESSES OF A GAUSSIAN SEQUENCE
Choi, Yong-Kab; Swang, Kyo-Shin; Moon, Hee-Jin; Kim, Tae-Sung; Baek, Jong-Il;
  PDF(new window)
 Abstract
In this paper we establish limsup and liminf theorems for the increments of partial sum processes of a dependent stationary Gaussian sequence.
 Keywords
Gaussian sequence;large deviation probability;regularly varying function;
 Language
English
 Cited by
 References
1.
S. A. Book and T. R. Shore, On large intervals in the Csörgő-Révész theorem on increments of a Wiener process, Z. Wahrsch. Verw. Gebiete 46 (1978), 1–11. crossref(new window)

2.
Y. K. Choi, Erdös-Rényi-type laws applied to Gaussian processes, J. Math. Kyoto Univ. 31(1) (1991), 191–217.

3.
Y. K. Choi, Z. Y. Lin, W. S. Wang, K. S. Hwang and T. S. Kim, Asymptotic behaviors for partial sum processes of a Gaussian sequence, Acta Math. Hungar. 103(1-2) (2004), 43–54. crossref(new window)

4.
E. Csaki and K. Gonchigdanzan, Almost sure limit theorems for the maximum of stationary Gaussian sequences, Statist. Probab. Lett. 58 (2002), 195–203. crossref(new window)

5.
M. Csorgo, A glimpse of Pál Erdös's impact on probability and statistics, Canad. J. Statist. 30(4) (2002). crossref(new window)

6.
M. Csorgo and P. Revesz, Strong Approximations in Probability and Statistics, Academic Press, New York, 1981.

7.
M. Csorgo and J. Steinebach, Improved Erdös-Rényi and strong approximation laws for increments of partial sums, Ann. Probab. 9(6) (1981), 988–996. crossref(new window)

8.
P. Deheuvels and J. Steinebach, Exact convergence rates in strong approximation laws for large increments of partial sums, Probab. Theory Related Fields 76 (1987), 369–393. crossref(new window)

9.
A. N. Frolov, On one-sided strong laws for large increments of sums, Statist. Probab. Lett. 37 (1998), 155–165. crossref(new window)

10.
L. Horvath and Q. M. Shao, Darling-Erdös-type theorems for sums of Gaussian variables with long-range dependence, Stochastic Process. Appl. 63 (1996), 117–137. crossref(new window)

11.
H. Lanzinger and U. Stadtmuller, Maxima of increments of partial sums for certain subexponential distributions, Stochastic Process. Appl. 86 (2000), 307–322. crossref(new window)

12.
M. R. Leadbetter, G. Lindgren and H. Rootzen, Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag, New York, 1983.

13.
W. V. Li and Q. M. Shao, A normal comparison inequality and its applications, Probab. Theory Related Fields 122 (2002), 494–508. crossref(new window)

14.
Z. Y. Lin, Path properties of Gaussian processes, Zhejiang University Press, 2001.

15.
Z. Y. Lin, On Csörgő-Révész's increments of sums of non-i.i.d. random variables, Scientia Sinica (Series A) 30 (1987), no. 9, 921–931.

16.
Z. Y. Lin, On increments of sums of independent non-identically distributed random variables, Scientia Sinica (Series A) 31 (1988), no. 8, 927–937.

17.
Z. Y. Lin, Y. K. Choi and K. S. Hwang, Some limit theorems on the increments of a multi-parameter fractional Brownian motion, Stochastic Anal. Appl. 19 (2001), no. 4, 499–517. crossref(new window)

18.
Z. Y. Lin and Q. M. Shao, On the limiting behaviors of increments of sums of random variables without moment conditions, Chinese Ann. Math. 14B (1993), no. 3, 307–318.

19.
J. Steinebach, On the increments of partial sum processes with multidimensional indices, Z. Wahrsch. Verw. Gebiete 63 (1983), 59–70. crossref(new window)

20.
J. Steinebach, Improved Erdos-Renyi and strong approximation laws for increments of renewal processes, Ann. Probab. 14 (1986), no. 2, 547–559. crossref(new window)

21.
W. S. Wang, Self-normalized lag increments of partial sums, Statist. Probab. Lett. 58 (2002), 41–51. crossref(new window)