JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NUMBER SYSTEM IN ℝn
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NUMBER SYSTEM IN ℝn
Jeong, Eui-Chai;
  PDF(new window)
 Abstract
In this paper, we establish a number system in which arises from a Haar wavelet basis in connection with decompositions of certain Cuntz algebra representations on ( ). Number systems in are also of independent interest [9]. We study radix-representations of : : … as = +…M +… where each D, and D is some specified digit set. Our analysis uses iteration techniques of a number-theoretic flavor. The view-point is a dual one which we term fractals in the large vs. fractals in the small,illustrating the number theory of integral lattice points vs. fractions.s vs. fractions.
 Keywords
C*-algebra;radix-representation;representation of c*-algebra;wavelet basis;fractal;
 Language
English
 Cited by
 References
1.
Christoph Bandt, Self-similar sets V: Integer matrices and fractal tilings of $R^n$, Proc. Amer. Math. Soc. 112 (1991), 549–562. crossref(new window)

2.
Ola Bratteli and P. E. T. Jorgensen, Iterated function system and permutation representations of the Cuntz algebra, Mem. Amer. Math. Soc., to appear.

3.
Ola Bratteli and P. E. T. Jorgensen, Isometries, shifts, Cuntz algebras multiresolution wavelet analysis of scale N, Integral Equ. Operator Theory 28 (1997), 382-443. crossref(new window)

4.
O. Bratteli, P. E. T. Jorgensen, and G. L. Price, Endomorpism of B(H), Proceedings of Symposia in prime Mathematics 59 (1996), 93–138.

5.
Joachim Cuntz, Simple $C^{\ast}$-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173–185. crossref(new window)

6.
Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math. 61 (1992).

7.
K. Grochenig and W. R. Madych, Multiresolution analysis, Haar bases, and self-similar tilings of $R^n$, IEEE Trans. Inform. Theory 38 (1992), 556–568. crossref(new window)

8.
Eui-Chai Jeong, Irreducible representations of the cuntz algebra $O_n$, Proc. Amer. Math. Soc. 127 (1999), 3582–3590. crossref(new window)

9.
Donald E. Knuth, The art of computer programming: Vol. 2: Seminumerical algorithms, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass., 1969.

10.
M. Laca, Endomorphisms of B(H) and Cuntz algebras, J. Operator Theory 30 (1993), 85–180.

11.
J. C. Lagarias and Yang Wang, Integral self-affine tiles in $R^n$, II: Lattice tilings, J. Fourier Anal. Appl. 3 (1997), 83–102. crossref(new window)

12.
A. M. Odlyzko, non-negative digit sets, Proc. London Math. Soc. 37 (1978), no. 3, 213–229. crossref(new window)

13.
B. M. Stewart, Theory of Numbers, The Macmillan Co., New York, 1964.