JOURNAL BROWSE
Search
Advanced SearchSearch Tips
REMARKS ON THE KKM PROPERTY FOR OPEN-VALUED MULTIMAPS ON GENERALIZED CONVEX SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
REMARKS ON THE KKM PROPERTY FOR OPEN-VALUED MULTIMAPS ON GENERALIZED CONVEX SPACES
KIM HOONJOO; PARK SEHIE;
  PDF(new window)
 Abstract
Let (X, D; ) be a G-convex space and Y a Hausdorff space. Then (X, Y) KD(X, Y), where is an admissible class (dup to Park) and KD denotes the class of multimaps having the KKM property for open-valued multimaps. This new result is used to obtain a KKM type theorem, matching theorems, a fixed point theorem, and a coincidence theorem.
 Keywords
KKM principle;generalized convex (G-convex) spaces;multimaps having the KKM property;multimaps having the KKM property;
 Language
English
 Cited by
1.
ELEMENTS OF THE KKM THEORY ON CONVEX SPACES,;

대한수학회지, 2008. vol.45. 1, pp.1-27 crossref(new window)
2.
COINCIDENCE THEOREMS FOR NONCOMPACT ℜℭ-MAPS IN ABSTRACT CONVEX SPACES WITH APPLICATIONS,;;

대한수학회보, 2012. vol.49. 6, pp.1147-1161 crossref(new window)
1.
COINCIDENCE THEOREMS FOR NONCOMPACT ℜℭ-MAPS IN ABSTRACT CONVEX SPACES WITH APPLICATIONS, Bulletin of the Korean Mathematical Society, 2012, 49, 6, 1147  crossref(new windwow)
2.
Alternative principles and minimax inequalities in G-convex spaces, Applied Mathematics and Mechanics, 2008, 29, 5, 665  crossref(new windwow)
3.
Fixed points, coincidence points and maximal elements with applications to generalized equilibrium problems and minimax theory, Nonlinear Analysis: Theory, Methods & Applications, 2009, 70, 1, 393  crossref(new windwow)
4.
Fixed Points and Existence Theorems of Maximal Elements with Applications inFC-Spaces, ISRN Applied Mathematics, 2011, 2011, 1  crossref(new windwow)
5.
Fixed point theorems for better admissible multimaps on abstract convex spaces, Applied Mathematics-A Journal of Chinese Universities, 2010, 25, 1, 55  crossref(new windwow)
 References
1.
M. Balaj, Applications of two matching theorems in generalized convex spaces, Nonlinear Anal. Forum 7 (2002), 123-130

2.
S. Park, Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps, J. Korean Math. Soc. 31 (1994), 493-519

3.
S. Park, Coincidence theorems for the better admissible multimaps and their applications, Nonlinear Anal. 30 (1997), 4183-419 crossref(new window)

4.
S. Park, A unified fixed point theory of multimaps on topological vector spaces, J. Korean Math. Soc. 35 (1998), 803-829. Corrections

5.
S. Park, A unified fixed point theory of multimaps on topological vector spaces, J. Korean Math. Soc. 36 (1999), 829-832

6.
S. Park, Elements of the KKM theory for generalized convex spaces, Korean J. Comput. Appl. Math. 7 (2000), 1-28

7.
S. Park, Remarks on topologies of generalized convex spaces, Nonlinear Funct. Anal. Appl. 5 (2000), 67-79

8.
S. Park, New topological versions of the Fan-Browder fixed point theorem, Nonlinear Anal. 47 (2001), 595-606 crossref(new window)

9.
S. Park, Fixed point theorems in locally G-convex spaces, Nonlinear Anal. 48 (2002), 869-879 crossref(new window)

10.
S. Park, Coincidence, almost fixed point, and minimax theorems on generalized convex spaces, J. Nonlinear Convex Anal. 4 (2003), 151-164

11.
S. Park and H. Kim, Coincidences of composites of u.s.c. maps on H-spaces and applications, J. Korean Math. Soc. 32 (1995), 251-264

12.
S. Park and H. Kim, Foundations of the KKM theory on generalized convex spaces, J. Math. Anal. Appl. 209 (1997), 551-571 crossref(new window)

13.
S. Park and W. Lee, A unified approach to generalized KKM maps in generalized convex spaces, J. Nonlinear Convex Anal. 2 (2001), 157-166