COMPOSITION OPERATORS ON THE PRIVALOV SPACES OF THE UNIT BALL OF ℂ^{n}

- Journal title : Journal of the Korean Mathematical Society
- Volume 42, Issue 1, 2005, pp.111-127
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/JKMS.2005.42.1.111

Title & Authors

COMPOSITION OPERATORS ON THE PRIVALOV SPACES OF THE UNIT BALL OF ℂ^{n}

UEKI SEI-ICHIRO;

UEKI SEI-ICHIRO;

Abstract

Let B and S be the unit ball and the unit sphere in , respectively. Let be the normalized Lebesgue measure on S. Define the Privalov spaces $N^P(B)\;(1\;<\;p\;<\;{\infty})$ by $$N^P(B)\;=\;\{\;f\;{\in}\;H(B) : \sup_{0 be a holomorphic self-map of B. Let denote the pull-back measure . In this paper, we prove that the composition operator is metrically bounded on (B) if and only if for some constant C and is metrically compact on if and only if as uniformly in . Our results are an analogous results for Mac Cluer's Carleson-measure criterion for the boundedness or compactness of on the Hardy spaces .

Keywords

Hardy spaces;Privalov spaces;composition operators;unit ball of ;

Language

English

Cited by

1.

2.

4.

5.

6.

7.

8.

9.

10.

References

1.

J. S. Choa and H. O. Kim, Composition operators on some F-algebras of holo- morphic functions, Nihonkai Math. J. 7 (1996), 29-39

2.

J. S. Choa and H. O. Kim, Composition operators between Nevanlinna-type spaces, J. Math. Anal. Appl. 257 (2001), 378-402

3.

C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, 1994

4.

B. D. MacCluer, Spectra of compact composition operators on $H^p(B_N)$ , Analysis 4 (1984), 87-103

5.

6.

B. D. MacCluer and J. H. Shapiro, Angular derivatives and compact composition operators on the Hardy and Bergman spaces, Canad. J. Math. 38 (1986), 878-906

7.

Y. Matsugu and S. Ueki, Isometries of weighted Bergman-Privalov spaces on the unit ball of $C^n$ , J. Math. Soc. Japan 54 (2002), 341-347

9.

W. Rudin, Function Theory on the Unit Ball of $C^n$ , Springer-Verlag, Berlin, New York, Heiderberg, 1980

10.

M. Stoll, Mean growth and Taylor coefficients of some topological algebras of analytic functions, Ann. Polon. Math. 35 (1977), 139-158

11.

M. Stoll, Invariant Potential Theory in the Unit Ball of $C^n$ , Cambridge Univ. Press, 1994

12.

A. V. Subbotin, Functional properties of Privalov spaces of holomorphic functions in several variables, Math. Notes 65 (1999), 230-237

13.

J. Xiao, Compact composition operators on the Area-Nevanlinna class, Expo. 17 (1999), 255-264