JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME RESULTS ON CONVERGENCE IN DISTRIBUTION FOR FUZZY RANDOM SETS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOME RESULTS ON CONVERGENCE IN DISTRIBUTION FOR FUZZY RANDOM SETS
JOO SANG YEOL; CHOI GYEONG SUK; KWON JOONG SUNG; KIM YUN KYONG;
  PDF(new window)
 Abstract
In this paper, we first establish some characterization of tightness for a sequence of random elements taking values in the space of normal and upper-semicontinuous fuzzy sets with compact support in . As a result, we give some sufficient conditions for a sequence of fuzzy random sets to converge in distribution.
 Keywords
fuzzy random sets;random sets;convergence in distribution;tightness;
 Language
English
 Cited by
1.
The Concepts of Tightness for Fuzzy Set Valued Random Variables,;

International Journal of Fuzzy Logic and Intelligent Systems, 2009. vol.9. 2, pp.147-153 crossref(new window)
1.
The Concepts of Tightness for Fuzzy Set Valued Random Variables, International Journal of Fuzzy Logic and Intelligent Systems, 2009, 9, 2, 147  crossref(new windwow)
 References
1.
Z. Artstein, Weak convergence of set-valued functions and control, SIAM J. Control Optim. 13 (1975), 865-878 crossref(new window)

2.
P. Billingsley, Convergence of probability measures, Second Edition, Wiley, New York, 1999

3.
D. Butnariu, Measurability concepts for fuzzy mappings, Fuzzy Sets and Systems 31 (1989), 77-82 crossref(new window)

4.
A. Colubi, J. S. Domingeuz-Menchero, M. Lopez-Diaz and D. Ralescu, A $D_E$ [0, 1] representation of random upper semicontinuous functions, Proc. Amer. Math. Soc. 130 (2002), 3237-3242. crossref(new window)

5.
Y. Feng, Mean-square integral and differential of fuzzy stochastic processes, Fuzzy Sets and Systems 102 (1999), 271-280 crossref(new window)

6.
S. Y. Joo and Y. K. Kim, Topological properties on the space of fuzzy sets, J. Math. Anal. Appl. 246 (2000), 576-590 crossref(new window)

7.
S. Y. Joo and Y. K. Kim, Weak convergence and tightness for fuzzy random variables (submitted)

8.
Y. K. Kim, Measurability for fuzzy valued functions, Fuzzy Sets and Systems 129 (2002), 105-109 crossref(new window)

9.
S. Li and Y. Ogura, Fuzzy random variables, conditional expectations and fuzzy martingales, J. Fuzzy Math. 4 (1996), 905-927

10.
S. Li, Y. Ogura and H. T. Nguyen, Gaussian processes and martingales for fuzzy-valued variables with continuous parameter, Inform. Sci. 133 (2001), 7- 21 crossref(new window)

11.
Yu. V. Prokhorov, Convergence of random processes and limit theorems in probability theory, Theory Probab. Appl. 1 (1956), 157-214 crossref(new window)

12.
M. L. Puri and D. A. Ralescu, Fuzzy random variables, J. Math. Anal. Appl. 114 (1986), 402-422

13.
G. Salinetti and R. Wets, On the convergence in distribution of measurable mul- tifunctions(random sets), normal integrands, stochastic processes and stochastic infima, Math. Oper. Res. 11 (1986), 385-419 crossref(new window)

14.
G. Wang and Y. Zhang, The theory of fuzzy stochastic processes, Fuzzy Sets and Systems 51 (1992), 161-178 crossref(new window)

15.
H. C. Wu, The central limit theorems for fuzzy random variables, Inform. Sci. 120 (1999), 239-256 crossref(new window)

16.
Y. Yoshida, M. Yasuda, J. Nakagami and M. Kurano,, Optimal stopping problem in a stochastic and fuzzy system, J. Math. Anal. Appl. 246 (2000), 135-149 crossref(new window)

17.
L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353 crossref(new window)