JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SKEW POLYNOMIAL RINGS OVER σ-QUASI-BAER AND σ-PRINCIPALLY QUASI-BAER RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SKEW POLYNOMIAL RINGS OVER σ-QUASI-BAER AND σ-PRINCIPALLY QUASI-BAER RINGS
HAN JUNCHEOL;
  PDF(new window)
 Abstract
Let R be a ring R and be an endomorphism of R. R is called -rigid (resp. reduced) if for any implies a = 0. An ideal I of R is called a -ideal if . R is called -quasi-Baer (resp. right (or left) -p.q.-Baer) if the right annihilator of every -ideal (resp. right (or left) principal -ideal) of R is generated by an idempotent of R. In this paper, a skew polynomial ring A = R[] of a ring R is investigated as follows: For a -rigid ring R, (1) R is -quasi-Baer if and only if A is quasi-Baer if and only if A is -quasi-Baer for every extended endomorphism on A of (2) R is right -p.q.-Baer if and only if R is -p.q.-Baer if and only if A is right p.q.-Baer if and only if A is p.q.-Baer if and only if A is -p.q.-Baer if and only if A is right -p.q.-Baer for every extended endomorphism on A of .
 Keywords
-rigid ring;-Baer ring;-quasi-Baer ring;-p.q.-Baer ring;-p.p. ring;skew polynomial ring;
 Language
English
 Cited by
 References
1.
E. P. Armendariz, A note on extensions of Baer and p.p. rings, Austral. Math. Soc. 18 (1974), 470-473 crossref(new window)

2.
S. K. Berberian, Baer *-rings, Springer-Verlag, Berlin-Heidelberg-New York, 1972

3.
G. F. Birkenmeier, Baer rings and quasi-continuous rings have a MSDN, Pacific J. Math. 97 (1981), 283-292 crossref(new window)

4.
G. F. Birkenmeier, Idempotents and completely semiprime ideals, Comm. Algebra 11 (1983), 567-580 crossref(new window)

5.
G. F. Birkenmeier, Decompositions of Baer-like rings, Acta Math. Hungar. 59 (1992), 319-326 crossref(new window)

6.
G. F. Birkenmeier, J. K. Kim and J. K. Park, On extensions of quasi-Baer and principally quasi-Baer rings, J. Pure Appl. Algebra 159 (2001), 25-42 crossref(new window)

7.
A. W. Chatters and C. R. Hajarnavis, Rings with Chain Conditions, Pitman, Boston, 1980

8.
W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967), 417-424 crossref(new window)

9.
C. Hong, N. Kim and T. Kwak, Ore extensions of Baer and p.p-rings, J. Pure Appl. Algebra 151 (2000), 215-226 crossref(new window)

10.
A. A. M. Kamal, Idempotents in polynomial rings, Acta Math. Hungar. 59 (1992), no. 3-4, 355-363 crossref(new window)

11.
I. Kaplansky, Rings of Operators, Lecture Notes in Math., Benjamin, New York, 1965

12.
P. Pollingher and A. Zaks, On Baer and quasi-Baer rings, Duke Math. J. 37 (1970), 127-138 crossref(new window)