JOURNAL BROWSE
Search
Advanced SearchSearch Tips
NORMALIZATION OF THE HAMILTONIAN AND THE ACTION SPECTRUM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
NORMALIZATION OF THE HAMILTONIAN AND THE ACTION SPECTRUM
OH YONG-GEUN;
  PDF(new window)
 Abstract
In this paper, we prove that the two well-known natural normalizations of Hamiltonian functions on the symplectic manifold () canonically relate the action spectra of different normalized Hamiltonians on arbitrary symplectic manifolds (). The natural classes of normalized Hamiltonians consist of those whose mean value is zero for the closed manifold, and those which are compactly supported in IntM for the open manifold. We also study the effect of the action spectrum under the of Hamiltonian diffeomorphism group. This forms a foundational basis for our study of spectral invariants of the Hamiltonian diffeomorphism in [8].
 Keywords
Hamiltonians;normalization;action functional;action spectrum;
 Language
English
 Cited by
1.
FLOER MINI-MAX THEORY, THE CERF DIAGRAM, AND THE SPECTRAL INVARIANTS,;

대한수학회지, 2009. vol.46. 2, pp.363-447 crossref(new window)
1.
CONTINUOUS HAMILTONIAN DYNAMICS AND AREA-PRESERVING HOMEOMORPHISM GROUP OF D2, Journal of the Korean Mathematical Society, 2016, 53, 4, 795  crossref(new windwow)
2.
Calabi quasi-morphisms for some non-monotone symplectic manifolds, Algebraic & Geometric Topology, 2006, 6, 1, 405  crossref(new windwow)
3.
Hamiltonian Floer homology for compact convex symplectic manifolds, Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2016, 57, 2, 361  crossref(new windwow)
 References
1.
A. Banyaga, Sur la structure du groupe des diffeomorphismes qui preservent une forme symplectique, Comm. Math. Helv. 53 (1978), 174-227 crossref(new window)

2.
I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics I, Math. Z. 200, (1989), 355-378 crossref(new window)

3.
I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics II, Math. Z. 203, (1989), 553-569 crossref(new window)

4.
M. Entov, K-area, Hofer metric and geometry of conjugacy classes in Lie groups, Invent. Math. 146 (2001), 93-141 crossref(new window)

5.
A. Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989), 575-611 crossref(new window)

6.
A. Floer and H. Hofer, Symplectic homology I, Math. Z. 215 (1994), 37-88 crossref(new window)

7.
H. Hofer, On the topological properties of symplectic maps, Proc. Roy. Soc. Edinburgh 115 (1990), 25-38

8.
F. Lalonde, D. McDuff and L. Polterovich, Topological rigidity of Hamiltonian loops and quantum homology, Invent. Math. 135 (1999), 369-385 crossref(new window)

9.
J. Marsden and J. Ratiu, Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds, in 'The Breadth of Stmplectic and Poisson Geometry', Progr. Math. 232 (2004), 525-570 ed., Birkhouser

10.
Y.-G. Oh, Symplectic topology as the geometry of action functional, I, J. Differential Geom. 46 (1997), 499-577

11.
Y.-G. Oh, Symplectic topology as the geometry of action functional, II, Comm. Anal. Geom. 7 (1999), 1-55

12.
Y.-G. Oh, Chain level Floer theory and Hofer's geometry of the Hamiltonian dif- feomorphism group, Asian J. Math. 6 (2002), 799-830, math.SG/0104243

13.
L. Polterovich, The Geometry of the Group of Symplectic Diffeomorphisms, Birkhauser, 2001

14.
P. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), 157-184 crossref(new window)

15.
M. Schwarz, On the action spectrum for closed symplectically aspherical mani- folds, Pacific J. Math. 193 (2000), 419-461 crossref(new window)

16.
P. Seidel, $\pi_1$ of symplectic diffeomorphism groups and invertibles in quantum homology rings, GAFA (1997), 1046-1095

17.
C. Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann. 292 (1992), 685-710 crossref(new window)