JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE ENTIRE FUNCTION SHARING ONE VALUE CM WITH K-TH DERIVATIVES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE ENTIRE FUNCTION SHARING ONE VALUE CM WITH K-TH DERIVATIVES
CHEN ZONG-XUAN; SHON KWANG HO;
  PDF(new window)
 Abstract
In this paper, we investigate some properties of the entire function of the hyper order less than sharing one value CM with its k-th derivative.
 Keywords
share the value;entire function;hyper order;
 Language
English
 Cited by
1.
ON THE BRÜCK CONJECTURE, Bulletin of the Australian Mathematical Society, 2016, 93, 02, 248  crossref(new windwow)
2.
Some results on the entire function sharing problem, Mathematica Slovaca, 2014, 64, 5  crossref(new windwow)
 References
1.
P. D. Barry, On a theorem of besicovitch, Quart. J. Math. Oxford 14 (1963), no. 2, 293-320 crossref(new window)

2.
P. D. Barry, Some theorems related to the cos $(\pi\;\rho)$ theorem, Proc. London Math. Soc. 21 (1970), no. 2, 334-360

3.
R. Bruck, On entire functions which share one value CM with their first derivative, Results Math. 30 (1996), 21-24 crossref(new window)

4.
Zong-Xuan Chen and Chung-Chun Yang, Some further results on the zeros and growths of entire solutions of second order linear differential equations, Kodai Math. J. 22 (1999), 273-285 crossref(new window)

5.
Zong-Xuan Chen, The growth of solutions of f'' + $e^{-Z}$f' + Q(z)f = 0 where the order (Q) = 1 Sci. China. Ser. A 45 (2002), no. 3, 290-300

6.
G. Gundersen, Meromorphic functions that share finite values with their derivative, J. Math. Anal. Appl. 75 (1980), 441-446 crossref(new window)

7.
G. Gundersen, Meromorphic functions that share four values, Trans. Amer. Math. Soc. 277 (1983), 545-567 crossref(new window)

8.
G. Gundersen, Correction to Meromorphic functions that share four values, Trans. Amer. Math. Soc. 304 (1987), 847-850 crossref(new window)

9.
G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. 37 (1988), no. 2, 88-104 crossref(new window)

10.
W. Hayman, Meromorphic Function, Clarendon Press, Oxford, 1964

11.
Yu-Zan He and Xiu-Zhi Xiao, Algebroid Functions and Ordinary Differential Equations, Science Press, Beijing, 1988 (in Chinese)

12.
G. Jank and L. Volkmann, Meromorphe Funktionen und Differentialgleichungen, Birkhauser, Basel-Boston, 1985

13.
I. Laine, Nevanlinna Theory and Complex Differential Equations, W. de Gruyter, Berlin, 1993

14.
A. I. Markushevich, Theory of Functions of a Complex Variable, Vol. 2, translated by R. A. Silverman (Englewood Cliffs, N. J. Prentice-Hall, 1965)

15.
E. Mues, Meromorphic functions sharing four valus, Complex Variables. 12 (1989), 167-179

16.
E. Mues and N. Steinmetz, Meromorphe funktionen, die mit ihrer ableitung werteteilen, Manuscripta Math. 29 (1979), 195-206 crossref(new window)

17.
R. Nevanlinna, Einige Eindentigkeitssatze in der theorie der meromorphen funktionen, Acta Math. 48 (1926), 367-391 crossref(new window)

18.
L. A. Rubel and C. C. Yang, Values shared by an entire function and its deriva- tive, Lecture Notes in Math. 599, Berlin, Springer-Verlag, 1977, 101-103

19.
G. Valiron, Lectures on the General Theory of Integral Functions, Chelsea, New York, 1949

20.
S. Wang, Meromorphic functions sharing four values, J. Math. Anal. Appl. 173 (1993), 359-369 crossref(new window)

21.
Lianzhong Yang, Solution of a differential equation and its appliation, J. Kodai Math. 22 (1999), 458-464 crossref(new window)

22.
Hong-Xun Yi and Chung-Chun Yang, The Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, 1995 (in Chinese)