JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HYPONORMAL TOEPLITZ OPERATORS ON THE BERGMAN SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HYPONORMAL TOEPLITZ OPERATORS ON THE BERGMAN SPACE
HWANG IN SUNG;
  PDF(new window)
 Abstract
In this note we consider the hyponormality of Toeplitz operators on the Bergman space (D) with symbol in the class of functions f + g with polynomials f and g
 Keywords
Bergman space;Toeplitz operators;hyponormal operators;
 Language
English
 Cited by
1.
HYPONORMAL TOEPLITZ OPERATORS ON THE BERGMAN SPACE,;;

호남수학학술지, 2008. vol.30. 1, pp.127-135 crossref(new window)
2.
HYPONORMALITY OF TOEPLITZ OPERATORS ON THE BERGMAN SPACE,;

대한수학회지, 2008. vol.45. 4, pp.1027-1041 crossref(new window)
3.
COMMUTATIVITY AND HYPONORMALITY OF TOEPLITZ OPERATORS ON THE WEIGHTED BERGMAN SPACE,;;

대한수학회지, 2009. vol.46. 3, pp.621-642 crossref(new window)
4.
THE HYPONORMAL TOEPLITZ OPERATORS ON THE VECTOR VALUED BERGMAN SPACE,;;;

대한수학회보, 2014. vol.51. 1, pp.237-252 crossref(new window)
1.
Hyponormal Toeplitz operators on the polydisk, Acta Mathematica Sinica, English Series, 2012, 28, 2, 333  crossref(new windwow)
2.
Hyponormal Toeplitz Operators on the Dirichlet Spaces, Abstract and Applied Analysis, 2013, 2013, 1  crossref(new windwow)
3.
THE HYPONORMAL TOEPLITZ OPERATORS ON THE VECTOR VALUED BERGMAN SPACE, Bulletin of the Korean Mathematical Society, 2014, 51, 1, 237  crossref(new windwow)
4.
HYPONORMAL TOEPLITZ OPERATORS ON THE BERGMAN SPACE, Honam Mathematical Journal, 2008, 30, 1, 127  crossref(new windwow)
 References
1.
S. Axler, Bergman spaces and their operators, Surveys of Some Recent Results in Operator Theory, Vol. I, Pitman Research Notes in Mathematics, Longman 171 (1988), 1-50

2.
C. Cowen, Hyponormal and subnormal Toeplitz operators, Surveys of Some Recent Results in Operator Theory, Vol. I, Pitman Research Notes in Mathematics, Longman 171 (1988), 155-167

3.
C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988), 809-812

4.
R. E. Curto and W. Y. Lee, Joint hyponormality of Toeplitz pairs, Memoirs Amer. Math. Soc. 150 (2001), no. 712

5.
R. Douglas, Banach algebra techniques in operator theorey, Academic Press, New York, 1972

6.
P. Duren, Theory of $H^p$ spaces, Academic Press, New York, 1970

7.
P. Fan, Remarks on hyponormal trigonometric Toeplitz operators, Rocky Mountain J. Math. 13 (1983), 489-493 crossref(new window)

8.
D. R. Farenick and W. Y. Lee, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. 348 (1996), 4153-4174 crossref(new window)

9.
C. Gu, A generalization of Cowen's characterization of hyponormal Toeplitz operators, J. Funct. Anal. 124 (1994), 135-148 crossref(new window)

10.
C. Gu, On a class of jointly hyponormal Toeplitz operators, Trans. Amer. Math. Soc. 354 (2002), 3275-3298 crossref(new window)

11.
I. S. Hwang, I. H. Kim and W. Y. Lee, Hyponormality of Toeplitz operators with polynomial symbol, Math. Ann. 313 (1999), 247-261 crossref(new window)

12.
I. S. Hwang and W. Y. Lee, Hyponormality of trigonometric Toeplitz operators, Trans. Amer. Math. 354 (2002), 2461-2474 crossref(new window)

13.
T. Nakazi and K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Amer. Math. Soc. 338 (1993), 753-769 crossref(new window)

14.
H. Sadraoui, Hyponormality of Toeplitz operators and Composition operators, Thesis, Purdue University, 1992

15.
D. Sarason, Generalized interpolation in $H^\infty$, Trans. Amer. math. Soc. 127 (1967), 179-203 crossref(new window)

16.
K. Zhu, Hyponormal Toeplitz operators with polynomial symbols, Integral Equations and Operator Theory 21 (1995), 376-381 crossref(new window)