JOURNAL BROWSE
Search
Advanced SearchSearch Tips
[Lp] ESTIMATES FOR A ROUGH MAXIMAL OPERATOR ON PRODUCT SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
[Lp] ESTIMATES FOR A ROUGH MAXIMAL OPERATOR ON PRODUCT SPACES
AL-QASSEM HUSSAIN MOHAMMED;
  PDF(new window)
 Abstract
We establish appropriate estimates for a class of maximal operators on the product space lacks regularity and $1\;\le\;\gamma\;\le\;2.\;Also,\;when\;\gamma\;
 Keywords
rough kernel;block space;singular integral;maximal operator;product domains;
 Language
English
 Cited by
 References
1.
A. Al-Salman, H. Al-Qassem, and Y. Pan, Singular integrals associated to homogeneous mappings with rough kernels, Hokkaido Math. J. 33 (2004), 551-569 crossref(new window)

2.
H. Al-Qassem and Y. Pan, $L^p$ boundedness for singular integrals with rough ker nels on product domains, Hokkaido Math. J. 31 (2002), 555-613 crossref(new window)

3.
J. Bourgain, Average in the plane over convex curves and maximal operators, J. Anal. Math. 47 (1986), 69-85 crossref(new window)

4.
L. K. Chen and H. Lin, A maximal operator related to a class of singular integrals, Illinois J. Math. 34 (1990), 120-126

5.
J. Duoandikoetxea and J. L. Rubio de Francia, Maximal functions and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), 541- 561 crossref(new window)

6.
J. Duoandikoetxea, Multiple singular integrals and maximal functions along hypersurfaces, Ann. Ins. Fourier (Grenoble), 36 (1986), 185-206 crossref(new window)

7.
D. Fan, Y. Pan and D. Yang, A weighted norm inequality for rough singular integrals, Tohoku Math. J. 51 (1999), 141-161 crossref(new window)

8.
R. Fefferman, Singular integrals on product domains, Bull. Amer. Math. Soc. 4 (1981), 195-201 crossref(new window)

9.
R. Fefferman and E. M. Stein, Singular integrals on product spaces, Adv. in Math., 45 (1982), 117-143 crossref(new window)

10.
Y. Jiang and S. Lu, A class of singular integral operators with rough kernels on product domains, Hokkaido Math. J. 24 (1995), 1-7 crossref(new window)

11.
M. Keitoku and E. Sato, Block spaces on the unit sphere in $R^{n}$, Proc. Amer. Math. Soc. 119 (1993), 453-455 crossref(new window)

12.
S. Lu, M. Taibleson, and G. Weiss, Spaces Generated by Blocks, Beijing Normal University Press, Beijing, 1989

13.
Y. Meyer, M. Taibleson, and G. Weiss, Some functional analytic properties of the space $B_q$ generated by blocks, Indiana Univ. Math. J. 34 (1985), no. 3, 493-515 crossref(new window)

14.
E. M. Stein, Maximal functions: spherical means, Proc. Natl. Acad. Sci. USA 73 (1976), 2174-2175 crossref(new window)

15.
E. M. Stein, Singular integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970

16.
M. H. Taibleson and G. Weiss, Certain function spaces associated with a.e. convergence of Fourier series, Univ. of Chicago Conf. in honor of Zygmund, Woodsworth, 1983