JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON KENMOTSU MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON KENMOTSU MANIFOLDS
JUN JAE-BOK; DE UDAY CHAND; PATHAK GOUTAM;
  PDF(new window)
 Abstract
The purpose of this paper is to study a Kenmotsu manifold which is derived from the almost contact Riemannian manifold with some special conditions. In general, we have some relations about semi-symmetric, Ricci semi-symmetric or Weyl semisymmetric conditions in Riemannian manifolds. In this paper, we partially classify the Kenmotsu manifold and consider the manifold admitting a transformation which keeps Riemannian curvature tensor and Ricci tensor invariant.
 Keywords
Ricci semi-symmetric Kenmotsu manifold;Weyl semisymmetric Kenmotsu manifold;-Einstein manifold;-parallel Ricci tensor;
 Language
English
 Cited by
1.
ON A SEMI-SYMMETRIC METRIC CONNECTION IN AN (ε)-KENMOTSU MANIFOLD,;;;;

대한수학회논문집, 2014. vol.29. 2, pp.331-343 crossref(new window)
1.
On lightlike geometry in indefinite Kenmotsu manifolds, Mathematica Slovaca, 2012, 62, 2  crossref(new windwow)
2.
Locally Symmetric CR-Integrable Almost Kenmotsu Manifolds, Mediterranean Journal of Mathematics, 2015, 12, 1, 159  crossref(new windwow)
3.
On invariant submanifolds of Kenmotsu manifolds, Journal of Geometry, 2015, 106, 1, 109  crossref(new windwow)
4.
ON A SEMI-SYMMETRIC METRIC CONNECTION IN AN (ε)-KENMOTSU MANIFOLD, Communications of the Korean Mathematical Society, 2014, 29, 2, 331  crossref(new windwow)
5.
On a type of almost Kenmotsu manifolds with nullity distributions, Arab Journal of Mathematical Sciences, 2016  crossref(new windwow)
6.
Some Curvature Properties of Kenmotsu Manifolds, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2015, 85, 3, 407  crossref(new windwow)
7.
Ricci Semi-symmetric Hypersurfaces in Complex Two-Plane Grassmannians, Bulletin of the Malaysian Mathematical Sciences Society, 2016  crossref(new windwow)
 References
1.
K. Kenmotsu, A class of contact Riemannian manifold, Tohoku Math. Jour. 24 (1972), 93-103 crossref(new window)

2.
Z.I. Szabo, Structure theorem on Riemannian spaces satisfying R(X,Y) . R = 0, I. The local version, J. Differential Geom. 17 (1982), 531-582

3.
L. Verstraelen, Comments on pseudo-symmetry in the sence of R. Deszcz, Geometry and Topology of submanifolds VI , World Scientific, 1933, 199-209

4.
E.M. Patterson, Some theorems on Ricci recurrent spaces, J. London Math. Soc. 27 (1952), 287-295 crossref(new window)

5.
D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics 509, Springer-Verlag, Berlin, 1976

6.
B. ONeil, Semi-Riemannian geometry with application to relativity, Academic Press, p. 208

7.
M.C. Chaki and M. Tarafdar, On a type of Sasakian manifold, Soochow J. Math. 16 (1990), 23-28

8.
T. Adati and T. Miyazawa, On a Riemannian space with recurrent conformal curvature, Tensor (N.S.) 18 (1967), 348-354

9.
M. Kon, Invariant submanifolds in Sasakian manifolds, Math. Ann. 219 (1976), 277-290 crossref(new window)

10.
S. Sasaki, Lecture notes on almost contact manifolds, Part II, Tohoku University, 1967