JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SPACES OF CONFORMAL VECTOR FIELDS ON PSEUDO-RIEMANNIAN MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SPACES OF CONFORMAL VECTOR FIELDS ON PSEUDO-RIEMANNIAN MANIFOLDS
KIM DONG-SOO; KIM YOUNG-HO;
  PDF(new window)
 Abstract
We study Riemannian or pseudo-Riemannian manifolds which carry the space of closed conformal vector fields of at least 2-dimension. Subject to the condition that at each point the set of closed conformal vector fields spans a non-degenerate subspace of the tangent space at the point, we prove a global and a local classification theorems for such manifolds.
 Keywords
pseudo-Riemannian manifold;warped product;conformal vector field;
 Language
English
 Cited by
1.
Harmonic vector fields on pseudo-Riemannian manifolds, Journal of Geometry and Physics, 2016  crossref(new windwow)
 References
1.
H. W. Brinkmann, Einstein spaces which are mapped conformally on each other, Math. Ann. 94 (1925), 119-145 crossref(new window)

2.
K. L. Duggaland Sharma and R. Sharma, Symmetries of Spacetimes and Rie- mannian Manifolds, Kluwer Academic Publishers, Dordrecht, 1999

3.
D. Eardley, J. Isenberg, J. Marsden, and V. Moncrief, Homothetic and conformal Symmetries of solutions to Einstein's equations, Comm. Math. Phys. 106 (1986), 137-158 crossref(new window)

4.
D. Garfinkle and Q. Tian, Spacetimes with cosmological constant and a conformal Killing field have constant curvature, Classical Quantum Gravity 4 (1987), 137-139 crossref(new window)

5.
W. D. Halford, Brinkmann's theorem in general relativity, Gen. Relativity Gravitation 14 (1982), 1193-1195 crossref(new window)

6.
G. S. Hall, Symmetries and geometry in general relativity, Differential Geom. Appl. 1 (1991), 35-45 crossref(new window)

7.
Y. Kerbrat, Transformations conformes des varietes pseudo-riemanniannes, J. Differential Geom. 11 (1976), 547-571

8.
M. G. Kerckhove, Conformal transformations of pseudo-Riemannian Einstein manifolds, Thesis, Brown University, 1988

9.
M. G. Kerckhove, The structure of Einstein spaces admitting conformal motions, Classical Quantum Gravity 8 (1991), 819-825 crossref(new window)

10.
D. -S. Kim and Y. H. Kim, A characterization of space forms, Bull. Korean Math. Soc. 35 (1998), no. 4, 757-767

11.
D. -S. Kim, Y. H. Kim, S. -B. Kim, and S. -H. Park, Conformal vector fields and totally umbilic hypersurfaces of a pseudo-Riemannian space form, Bull. Korean Math. Soc. 39 (2002), no. 4, 671-680 crossref(new window)

12.
W. Kuhnel, Conformal transformations between Einstein spaces, In: Conformal Geometry, R. S. Kulkarni and U. Pinkal, Aspects Math. E12 (1988), 105-146

13.
W. Kuhnel and H. B. Rademacher, Twistor spinors with zeros, Internat. J. Math. 5 (1994), 877-895 crossref(new window)

14.
W. Kuhnel and H. B. Rademacher, Conformal vector fields on pseudo-Riemannian spaces, Diffrential Geom. Appl. 7 (1997), 237-250 crossref(new window)

15.
W. Kuhnel and H. B. Rademacher, Essential conformal fields in pseudo-Riemannian geometry, J. Math. Pures Appl. 74 (1995), no. 9, 453-481

16.
B. T. McInnes, Brinkmann's theorem in general relativity and non-Riemannian field theories, Gen. Relativity Gravitation 12 (1980), 767-773 crossref(new window)

17.
B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983

18.
P. Penrose and W. Rindler, Spinors and space time, Vol. 1, 2, Cambridge Monogr. Math. Phys. 1986

19.
H. B. Rademacher, Generalized Killing Spinors with imaginary Killing function and conformal Killing fields, In: Global diffrential geometry and global analysis(Berlin, 1990), Lecture Notes in Math. 1481 (1991), Springer, Berlin, 192-198

20.
R. Sharma and K. L. Duggal, A characterization of affine conformal vector field, C. R. Math. Acad. Sci. Soc. R. Can. 7 (1985), 201-205

21.
K. Yano, The theory of Lie derivatives and its applications, North-Holland, Amsterdam, 1957