JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FRACTIONAL INTEGRAL ALONG HOMOGENEOUS CURVES IN THE HEISENBERG GROUP
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FRACTIONAL INTEGRAL ALONG HOMOGENEOUS CURVES IN THE HEISENBERG GROUP
KIM JOONIL;
  PDF(new window)
 Abstract
We obtain the type set for the fractional integral operator along the curve on the three dimensional Heisenberg group when . The proof is based on the Fourier inversion formula and the angular Littlewood-Paley decompositions in the Heisenberg group in [5].
 Keywords
typeset;fractional integral;Heisenberg group;group Fourier trasform;
 Language
English
 Cited by
 References
1.
M. Christ, Endpoint bounds for singular fractional integral operators, preprint, unpublished, 1988

2.
M. Christ, Convolution, curvature, and combinatorics: a case study, Int. Math. Res. Not. 19 (1998), 1033-1048 crossref(new window)

3.
G. B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, Princeton Univ. Press, 122 (1989)

4.
A. Greenleaf, S. Wainger, and A. Seeger, A On X-ray transforms for rigid line complexes and integrals over curves in $R^4$, Proc. Amer. Math. Soc. 127 (1999), 3533-3545 crossref(new window)

5.
J. Kim, $L^p$-estimate for singular integrals and maximal operators associated with flat curves on the Heisenberg group, Duke. Math. J. 114 (2002), 555-593 crossref(new window)

6.
D. Obelin, Convolution estimates for some measures on curves, Proc. Amer. Math. Soc. 99 (1987), 56-60

7.
S. Secco, $L^p$-improving properties of measures supported on curves on the Heisenberg group, Studia Math. 132 (1999), 179-201

8.
S. Secco, Fractional integration along homogeneous curves in $R^3$, Math. Scand. 85 (1999), 259-270

9.
E. M. Stein, Harmonic Analysis:Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993