JOURNAL BROWSE
Search
Advanced SearchSearch Tips
DISCRETE-TIME QUEUE WITH VARIABLE SERVICE CAPACITY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
DISCRETE-TIME QUEUE WITH VARIABLE SERVICE CAPACITY
LEE YUTAE;
  PDF(new window)
 Abstract
This paper considers a discrete-time queueing system with variable service capacity. Using the supplementary variable method and the generating function technique, we compute the joint probability distribution of queue length and remaining service time at an arbitrary slot boundary, and also compute the distribution of the queue length at a departure time.
 Keywords
discrete-time queue;variable service capacity;moment;bound;queue length;performance analysis;
 Language
English
 Cited by
 References
1.
H. Bruneel, Performance of discrete-time queueing systems, Comput. Oper. Res. 20 (1993), 303-320 crossref(new window)

2.
H. Bruneel and B. Kim, Discrete-time Models for Communication Systems Including ATM, Kluwer Academic Publishers, 1993

3.
M. L. Chaudhry and S. H. Chang, Analysis of the discrete-time bulk-service queue $Geo/G^Y$ /1/n + B, Oper. Res. Lett. 2003

4.
M. L. Chaudhry and J. G. C. Templeton, A First Course in Bulk Queues, John Wiley & Sons, 1983

5.
B. D. Choi, D. I. Choi, Y. Lee and D. K. Sung, Priority queueing system with fixed-length packet-train arrivals, IEE Proceedings-Communications 145 (1998), no. 5, 331-336

6.
B. D. Choi, Y. Lee and D. I. Choi, $Geo^{X_{1}}$, $Geo^{X_{2}}$/D/c HOL priority queueing system with random order selection within each priority class, Probab. Engrg. Inform. Sci. 12 (1998), no. 1, 125-139 crossref(new window)

7.
E. Cinlar, Introduction to Stochastic Processes, Prentice-Hall, Inc., Englewood Cliff, New Jersey, 1975

8.
T. J. J. Denteneer, J. S. H. van Leeuwaarden and J. A. C. Resing, Bounds for a discrete-time multi server queue with an application to cable networks, ITC 18, Berlin, 2003

9.
J. H. Dshalalow, Frontiers in queueing, CRC Press, Boca Raton, Florida, 1997

10.
M. A. Dummler and A. K. Schomig, Using discrete-time analysis in the performance evaluation of manufacturing systems, 1999 International Conference on Semiconductor Manufacturing Operational Modeling and Simulation(SMOMS'99), San Francisco, California, January, 1999, 18-20

11.
U. C. Gupta and V. Goswami, Performance analysis of finite buffer discrete-time queu with bulk service, Comput. Oper. Res. 29 (2002), 1331-1341 crossref(new window)

12.
G. U. Hwang and K. Sohraby, Power tail aymptotic results of a discrete time queue with long range dependent input, J. Korean Math. Soc. 40 (2003), no. 1, 87-107

13.
N. K. Kim and M. L. Chaudhry, An invariance relation and a unified method to derive stationary queue-length distributions, Oper. Res. 52 (2004), no. 5

14.
J. Lamperti., Criteria for the recurrence or transience of stochastic process, I, J. Math. Anal. Appl. 1 (1960) 314-330 crossref(new window)

15.
Y. Lee, Discrete Time Analysis of GI /G /1 Priority Queueing Systems, M.S. dissertation, Korea Advanced Institute of Science and Technology(KAIST), Korea, 1993

16.
Y. Lee, Discrete-time $Geo^X$/G/1 queue with preemptive resume priority, Math. Comput. Modelling 34 (2001), 243-250 crossref(new window)

17.
Y. Lee and B. D. Choi, Queueing system with multiple delay and loss priorities for ATM networks, Inform. Sci. 138 (2001), no. 1-4, 7-29 crossref(new window)

18.
Y. Lee and K. S. Lee, Discrete-time $Geo^X$/G/1 queue with preemptive repeat different priority, Queueing Syst. Theory Appl. 44 (2003) no. 4, 399-411 crossref(new window)

19.
Y. Lee, Y. H. Kim and J. D. Huh, Discrete-time $Geo^X$/G/1 queue with nonpreemptive priority, Comput. Math. Appl. 46 (2003), no. 10-11, 1625-1632

20.
A. G. Pakes, Some conditions for ergodicity and recurrence of Markov chains, Oper. Res. 17 (1969), 1058-1061 crossref(new window)

21.
T. L. Saaty, Elements of queueing theory with applications, McGraw-Hill Book company, 1961

22.
H. Takagi, Queueing Analysis Vol.3: Discrete-time systems, North-Holland, Amsterdam, 1993