JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ASYMPTOTIC DIRICHLET PROBLEM FOR HARMONIC MAPS ON NEGATIVELY CURVED MANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ASYMPTOTIC DIRICHLET PROBLEM FOR HARMONIC MAPS ON NEGATIVELY CURVED MANIFOLDS
KIM SEOK WOO; LEE YONG HAH;
  PDF(new window)
 Abstract
In this paper, we prove the existence of nonconstant bounded harmonic maps on a Cartan-Hadamard manifold of pinched negative curvature by solving the asymptotic Dirichlet problem. To be precise, given any continuous data f on the boundary at infinity with image within a ball in the normal range, we prove that there exists a unique harmonic map from the manifold into the ball with boundary value f.
 Keywords
asymptotic Dirichlet Problem;harmonic maps;
 Language
English
 Cited by
 References
1.
A. Ancona, Negatively curved manifolds, elliptic operators, and the Martin boundary, Ann. of Math. 125 (1987), 495-536 crossref(new window)

2.
A. Ancona, Convexity at infinity and Brownian motion on manifolds with unbounded negative curvature, Rev. Mat. Iberoamericana 10 (1994), 189-220

3.
M. T. Anderson, The Dirichlet problem at infinity of negative curvature, J. Differential Geom. 18 (1983), 701-721

4.
M. T. Anderson and R. Schoen, Positive harmonic functions on complete manifolds of negative curvature, Ann. of Math. 121 (1985), 429-461 crossref(new window)

5.
P. Aviles, H. I. Choi, and M. Micallef Boundary behavior of harmonic maps on non-smooth domains and complete negatively curved manifolds, J. Funct. Anal. 99 (1991), 293-331 crossref(new window)

6.
S. Y. Cheng, Liouville theorem for harmonic maps, Proc. Sympos. Pure Math. 36 (1980), 147-151

7.
S. Y. Cheng, The Dirichlet problem at infinity for nonpositively curved manifolds, Comm. Anal. Geom. 1 (1993), 101-112

8.
H. I. Choi, Asymptotic Dirichlet problem for harmonic functions on Riemannian manifolds, Trans. Amer. Math. Soc. 281 (1984) 691-716 crossref(new window)

9.
H. I. Choi, S. W. Kim, and Y. H. Lee, Rough isometry and asymptotic Dirichlet problem, Tohoku Math. J. 50 (1998), 333-348 crossref(new window)

10.
Q. Ding and D. Zhou, The existence of bounded harmonic functions on C-H manifolds, Bull. Austral. Math. Soc. 53 (1996), 197-207 crossref(new window)

11.
P. Eberlein and B. O'Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45- 109 crossref(new window)

12.
M. Giaquinta and S. Hildebrandt, An existence theorem for harmonic mappings of Riemannian manifolds, J. Reine Angew. Math. 336 (1982), 124-164

13.
R. E. Greene and H. Wu, Function theory on manifolds which possess a pole, Lecture Notes in Math. (Springer-Verlag, Berlin, Heidelberg, 699 (1979)

14.
S. Hildebrandt, H. Kaul and K. Widman, An existence theorem for harmonic mappings of Riemannian manifolds, Acta. Math. 138 (1977), 1-16 crossref(new window)

15.
E. P. Hsu, Brownian motion and Dirichlet problems at infinity, Ann. Probab. 31 (2003), no. 3, 1305-1319 crossref(new window)

16.
P. Hsu and P. March, The limiting angle of certain Riemannian Brownian motions, Comm. Pure Appl. Math. 38 (1985), 755-768 crossref(new window)

17.
W. Jager and H. Kaul, Uniqueness and stability of harmonic maps and their Jacobi feilds, Manuscripta Math. 28 (1979), 269-291 crossref(new window)

18.
R. Schoen and S. T. Yau, Lectures on Differential Geometry, International Press, Boston, 1994

19.
D. Sullivan, The Dirichlet problem at infinity for a negatively curved manifold, J. Diffrential Geom. 18 (1983), 723-732

20.
S. T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228 crossref(new window)