JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONVOLUTORS FOR THE SPACE OF FOURIER HYPERFUNCTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONVOLUTORS FOR THE SPACE OF FOURIER HYPERFUNCTIONS
KIM KWANG WHOI;
  PDF(new window)
 Abstract
We define the convolutions of Fourier hyperfunctions and show that every strongly decreasing Fourier hyperfunction is a convolutor for the space of Fourier hyperfunctions and the converse is true. Also we show that there are no differential operator with constant coefficients which have a fundamental solution in the space of strongly decreasing Fourier hyperfunctions. Lastly we show that the space of multipliers for the space of Fourier hyperfunctions consists of analytic functions extended to any strip in which are estimated with a special exponential function exp.
 Keywords
Fourier hyperfunction;convolution;convolution operator;convolutor;pseudodifferential operator;multiplier;
 Language
English
 Cited by
1.
New spaces of functions and hyperfunctions for Hankel transforms and convolutions, Monatshefte für Mathematik, 2008, 153, 2, 89  crossref(new windwow)
 References
1.
S.-Y. Chung, D. Kim, and S. K. Kim, Structure of the extended Fourier hyper- functions, Japan. J. Math. 19 (1993), no. 2, 217-226

2.
I. M. Gel'fand and G. E. Shilov, Generalized functions Vol. 2, Acad. Press New York and London, 1968

3.
S. G. Gindikin and L. R. Volevich, Distributions and Convolution Equations, Gordon and Breach Sci. Publ., 1992

4.
L. Hormander, Linear Partial Differential Operators, Springer-Verlag Berlin New York, 1969

5.
A. Kaneko, Introduction to hyperfunctions, KTK Sci. Publ./Tokyo, 1992

6.
K. W. Kim, The space of Fourier hyperfunctions as an inductive limit of Hilbert space, Preprint

7.
K. W. Kim, S.-Y. Chung, and D. Kim, Fourier hyperfunctions as the boundary values of smooth solutions of heat equations, Publ. RIMS Kyoto Univ. 29 (1993)

8.
H. Komatsu, Introduction to the theory of generalized functions, Iwanami Sheoten, Tokyo, 1978. (Jananeses)

9.
S. G. Krantz and H. R. Parks, A Primer of real analytic functions, Birkhauser Verlag, 1992

10.
E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean spaces, Princeton Univ. Press, 1975

11.
M. E. Taylor, Pseudodifferential operators, Princeton Univ. Press, 1981

12.
F. Treves, Topological vector spaces, distributions and kernels, Acad. Press New York and London, 1967

13.
K. Yosida, Functional analysis, Spriger-Verlag Berlin New York