POSITIVE PERIODIC SOLUTIONS OF SYSTEMS OF FUNCTIONAL DIFFERENTIAL EQUATIONS

- Journal title : Journal of the Korean Mathematical Society
- Volume 42, Issue 4, 2005, pp.749-759
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/JKMS.2005.42.4.749

Title & Authors

POSITIVE PERIODIC SOLUTIONS OF SYSTEMS OF FUNCTIONAL DIFFERENTIAL EQUATIONS

RAFFOUL YOUSSEF N.;

RAFFOUL YOUSSEF N.;

Abstract

We apply a cone theoretic fixed point theorem and obtain conditions for the existence of positive periodic solutions of the system of functional differential equations .

Keywords

cone theory;functional differential equations;positive periodic solution;

Language

English

Cited by

1.

2.

References

1.

R. P. Agarwal and P. J. Y. Wong, On the existence of positive solutions of higher order difference equations, Topol. Methods Nonlinear Anal. 10 (1997) no. 2, 339-351

2.

S. Cheng and G. Zhang, Existence of positive periodic solutions for nonautonomous functional differential equations, Electron. J. Differential Equations 59 (2001), 1-8

3.

A. Datta and J. Henderson, Differences and smoothness of solutions for functional difference equations, Proceedings Difference Equations 1 (1995), 133-142.,

4.

P. W. Eloe, Y. Raffoul, D. Reid, and K. Yin, Positive solutions of nonlinear Functional Difference Equations, Comput. Math. Appl. 42 (2001), 639-646

5.

C. P. Gupta, Solvability of a three-point boundary value problem for a second order ordinary differential equation, J. Math. Anal. Appl. 168 (1997), 540-551

6.

C. P. Gupta and S. I. Trofimchuk, A sharper condition for the stability of a three- point second order boundary value problem, J. Math. Anal. Appl. 205 (1997), 586-597

7.

J. Henderson and W. N. Hudson, Eigenvalue problems for nonlinear differential equations, Comm. Appl. Nonlinear Anal. 3 (1996), 51-58

8.

J. Henderson and A. Peterson, Properties of delay variation in solutions of delay difference equations, J. Differential Equations 1 (1995), 29-38

9.

J. Henderson and H. Wang, Positive solutions for nonlinear eigenvalue problems, J. Math. Anal. Appl. 208 (1997), 252-259

10.

D. Jiang, J. Wei, and B. Zhang, Positive periodic solutions of functional differential equations and population models, Electron. J. Differential Equations 2002 (2002), no. 71, 1-13

11.

M. A. Krasnosel'skii, Positive solutions of operator Equations, Noordhoff, Groningen, 1964

12.

R. MA, A remark on a second order three-point boundary value problem , J. Math. Anal. Appl. 183 (1994), 518-522

13.

R. M, Existence theorem for a second order three-point boundary value problem, J. Math. Anal. Appl. 212 (1997), 430-442

14.

R. MA, Positive solutions for second order three-point boundary value problem, Appl. Math. Lett. 14 (2001), 193-204

15.

R. MA,, Positive solutions of a nonlinear three-point boundary-value problem, Electron. J. Differential Equations 1999 (1999), no. 34, 1-8

16.

F. Merdivenci, Two positive solutions of a boundary value problem for difference equations, J. Difference Equ. Appl. 1 (1995), 263-270

17.

Y. Raffoul, Positive periodic solutions of nonlinear functional difference equations, Electron. J. Differential Equations 55 (2002), 1-8

18.

Y. Raffoul, Positive solutions of Three-Point Nonlinear Second Order Boundary Value Problem, Electron. J. Qual. Theory Differ. Equ. 15 (2002), 1-11

19.

W. Yin, Eigenvalue problems for functional differential equations, Journal of Nonlinear Differential Equations 3 (1997), 74-82