JOURNAL BROWSE
Search
Advanced SearchSearch Tips
FREE ACTIONS OF FINITE ABELIAN GROUPS ON 3-DIMENSIONAL NILMANIFOLDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
FREE ACTIONS OF FINITE ABELIAN GROUPS ON 3-DIMENSIONAL NILMANIFOLDS
Choi, Dong-Soon; Shin, Joon-Kook;
  PDF(new window)
 Abstract
We study free actions of finite abelian groups on 3­dimensional nilmanifolds. By the works of Bieberbach and Waldhausen, this classification problem is reduced to classifying all normal nilpotent subgroups of almost Bieberbach groups of finite index, up to affine conjugacy. All such actions are completely classified.
 Keywords
group actions;Heisenberg group;almost Bieberbach groups;Affine conjugacy;
 Language
English
 Cited by
1.
Classification of partially hyperbolic diffeomorphisms in 3-manifolds with solvable fundamental group, Journal of Topology, 2015, 8, 3, 842  crossref(new windwow)
2.
Group extensions and free actions by finite groups on solvmanifolds, Mathematische Nachrichten, 2010, n/a  crossref(new windwow)
 References
1.
H. Y. Chu and J. K. Shin, Free actions of finite groups on the 3-dimensional nilmanifold, Topology Appl. 144 (2004), 255-270 crossref(new window)

2.
K. Dekimpe, P. Igodt, S. Kim, and K. B. Lee, Affne structures for closed 3-dimensional manifolds with nil-geometry, Quart. J. Mech. Appl. Math. 46 (1995), 141-167

3.
K. Y. Ha, J. H. Jo, S. W. Kim, and J. B. Lee, Classification of free actions of finite groups on the 3-torus, Topology Appl. 121 (2002), no. 3, 469-507 crossref(new window)

4.
W. Heil, On $P^2$-irreducible 3-manifolds, Bull. Amer. Math. Soc. 75 (1969), 772- 775 crossref(new window)

5.
W. Heil, Almost sufficiently large Seifert fiber spaces, Michigan Math. J. 20 (1973), 217-223 crossref(new window)

6.
J. Hempel, Free cyclic actions of $S^1{\times}S^1{\times}S^1$, Proc. Amer. Math. Soc. 48 (1975), no. 1, 221-227 crossref(new window)

7.
K. B. Lee, There are only finitely many infra-nilmanifolds under each manifold, Quart. J. Mech. Appl. Math. 39 (1988), 61-66

8.
K. B. Lee and F. Raymond, Rigidity of almost crystallographic groups, Contemp. Math. 44 (1985), 73-78 crossref(new window)

9.
K. B. Lee, J. K. Shin, and Y. Shoji, Free actions of finite abelian groups on the 3-Torus, Topology Appl. 53 (1993), 153-175 crossref(new window)

10.
P. Orlik, Seifert Manifolds, Lecture Notes in Math. 291, Springer-Verlag, Berlin, 1972

11.
P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-489 crossref(new window)

12.
J. K. Shin, Isometry groups of unimodular simply connected 3-dimensional Lie groups, Geom. Dedicata 65 (1997), 267-290 crossref(new window)

13.
F. Waldhausen, On irreducible 3-manifolds which are suffciently large, Ann. of Math. 87 (1968), no. 2, 56-88 crossref(new window)

14.
S. Wolfram, Mathematica, Wolfram Research, 1993