JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STABILITY ANALYSIS OF BURSTING MODELS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STABILITY ANALYSIS OF BURSTING MODELS
Lee, Eui-Woo;
  PDF(new window)
 Abstract
In this paper, we present a general method for the stability analysis of some bursting models. Our method is geometric in the sense that we consider a flow-defined return map defined on a section and determine when the map is a contraction. We find that there are three different stability types in the codimension-1 planar bursters.
 Keywords
bursting;stability;bifurcation;delayed behavior;singular perturbation;
 Language
English
 Cited by
 References
1.
W. B. Adams and J. A. Benson, The generation and modulation of endogenous rhythmicity in the aplysia bursting pacemaker neurone R15, Progr. Biophys. Molec. Biol. 46 (1985), 1-49 crossref(new window)

2.
S. M. Baer, T. Erneux, and J. Rinzel, The slow passage through a Hopf bifurcation: delay, memory effects, and resonances, SIAM J. Appl. Math. 49 (1989), 55-71 crossref(new window)

3.
R. Bertram, M. J. Butte, T. Kiemel, and A. Sherman, Topological and phenomenological classification of bursting oscillations, Bull. Math. Biol. 57 (1995), 413-439 crossref(new window)

4.
R. J. Butera, J. Rinzel, and J. C. Smith, Models of respiratory rhythm generation in the pre-Botzinger complex: I. Bursting pacemaker model, J. Neurophysiology 82 (1999), 382-397

5.
T. R. Chay and J. Keizer, Minimal model for membrane oscillations in the pan- creatic $\beta$-cell, Biophys. J. 42 (1983), 181-190 crossref(new window)

6.
C. A. Del Negro, C. F. Hsiao, S. H. Chandler, and A. Garfinkel, Evidence for a novel bursting mechanism in rodent trigeminal neurons, Biophys. J. 75 (1998), 174-182 crossref(new window)

7.
G. de Vries, Multiple bifurcations in a polynomial model of bursting oscillations, J. Nonlinear Sci. 8 (1998), 281-316 crossref(new window)

8.
G. B. Ermentrout and N. Kopell, Parabolic bursting in an excitable system coupled with a slow oscillation, SIAM J. Appl. Math. 46 (1986), 233-253 crossref(new window)

9.
N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979), 53-98 crossref(new window)

10.
M. Golubitsky, K. Josic, and T. J. Kaper, An unfolding theory approach to bursting in fast-slow systems, In: Global Analysis of Dynamical Systems (H.W. Broer, B. Krauskopf and G. Vegter, eds.), Institute of Physics Publ. (2001), 277-308

11.
J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983

12.
E. M. Izhikevich, Neural excitability, spiking and bursting, Inter. J. Bifur. Chaos 10 (2000), no. 6, 1171-1266 crossref(new window)

13.
Y. A. Kuznetsov, Elements of applied bifurcation theory, Springer-Verlag, New York, 1995

14.
E. Lee, Stability analysis of parabolic bursting, In preparation

15.
E. Lee and D. Terman, Uniqueness and stability of periodic bursting solutions, J. Differential Equations 158 (1999), 48-78 crossref(new window)

16.
C. Morris and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophys. J. 35 (1981), 193-213 crossref(new window)

17.
A. Nejshtadt, Asymptotic investigation of the loss of stability by an equilibrium as a pair of eigenvalues slowly cross the imaginary axis, Uspekhi Mat. Nauk 40 (1985), 190-191

18.
R. E. Plant and M. Kim, On the mechanism underlying bursting in the Aplysia abdominal ganglion R-15 cell, Math. Biosci. 26 (1975), 357-375 crossref(new window)

19.
J. Rinzel, A formal classification of bursting mechanisms in excitable systems, In: Proceedings of the International Congress of Mathematicians, vol. 1 & 2 (pp. 1578-1593). American Mathematical Society, Providence, RI, 1987

20.
J. Rinzel and Y. S. Lee, On different mechanism for membrane potential bursting, In: Lecture Notes in Biomathematics, vol. 66 (pp. 19-33). Springer-Verlag, New York, 1986

21.
J. Rubin and D. Terman, Geometric singular perturbation analysis of neuronal dynamics, In: Handbook of Dynamical Systems, vol.3: Towards Applications, Elsevier, 2002

22.
A. Sherman, J. Rinzel, and J. Keizer, Emergence of organized bursting in clusters of pancreatic ${\beta}$-cells by channel sharing, Biophys. J. 54 (1988), 411-425 crossref(new window)

23.
D. Terman, Chaotic spikes arising from a model for bursting in excitable mem- branes, SIAM J. Appl. Math. 51 (1991), 1418-1450 crossref(new window)

24.
D. Terman, The transition from bursting to continuous spiking in excitable membrane models, J. Nonlinear Sci. 2 (1992), 135-182 crossref(new window)

25.
A. N. Tihonov, On the dependence of the solutions of the differential equations on a small parameter, Mat. Sb. 31 (1948), 575-586