JOURNAL BROWSE
Search
Advanced SearchSearch Tips
RELATIVE SEQUENCE ENTROPY PAIRS FOR A MEASURE AND RELATIVE TOPOLOGICAL KRONECKER FACTOR
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
RELATIVE SEQUENCE ENTROPY PAIRS FOR A MEASURE AND RELATIVE TOPOLOGICAL KRONECKER FACTOR
AHN YOUNG-HO; LEE JUNGSEOB; PARK KYEWON KOH;
  PDF(new window)
 Abstract
Let be a dynamical system and (Y, A, v, S) be a factor. We investigate the relative sequence entropy of a partition of X via the maximal compact extension of (Y, A, v, S). We define relative sequence entropy pairs and using them, we find the relative topological factor over (Y, v) which is the maximal topological factor having relative discrete spectrum over (Y, v). We also describe the topological Kronecker factor which is the maximal factor having discrete spectrum for any invariant measure.
 Keywords
relative sequence entropy;relative sequence entropy pairs;relative weakly mixing;compact extension;relative Kronecker factor;equicontinuous factor;null factor;
 Language
English
 Cited by
1.
Relativization of dynamical properties, Science China Mathematics, 2012, 55, 5, 913  crossref(new windwow)
 References
1.
F. Blanchard, E. Glasner, and E. Host, A variation on the variational principle and applications to entropy pairs, Ergodic Theory Dynam. Systems 17 (1997), 29-43 crossref(new window)

2.
F. Blanchard and Y. Lacroix, Zero entropy factors of topological flows, Proc. Amer. Math. Soc. 119 (1993), no. 2, 985-992

3.
E. Glasner, A simple characterization of the set of $\mu$-entropy pairs and applica- tion, Israel J. Math. 102 (1997), 13-27 crossref(new window)

4.
E. Glasner, Ergodic theory via joinings, Math. Surverys Monogr. 101 (2003)

5.
T. Goodman Topological sequence entropy, Proc. London Math. Soc. 29 (1974), no. 3, 331-350

6.
W. Huang, S. Li, S. Shao, and X. Ye, Null systems and sequence entropy pairs, Ergodic Theory Dynam. Systems 23 (2003), no. 3, 1505-1523 crossref(new window)

7.
W. Huang, A. Maass, and X. Ye, Sequence entropy pairs for a measure, Ann. Inst. Fourier, to appear

8.
P. Hulse, Sequence entropy relative to an invariant $\sigma$-algebra, J. London Math Soc. 33 (1986), no. 2, 59-72 crossref(new window)

9.
M. Lemanczyk and A. Siemaszko, A note on the existence of a largest topological factors with zero entropy, Proc. Amer. Math. Soc. 129 (2001), 475-485 crossref(new window)

10.
K. K. Park and A. Siemaszko, Relative topological Pinsker factors and entropy pairs, Monatsh. Math. 134 (2001), 67-79 crossref(new window)