JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONDITIONAL FIRST VARIATION OVER WIENER PATHS IN ABSTRACT WIENER SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONDITIONAL FIRST VARIATION OVER WIENER PATHS IN ABSTRACT WIENER SPACE
CHO, DONG HYUN;
  PDF(new window)
 Abstract
In this paper, we define the conditional first variation over Wiener paths in abstract Wiener space and investigate its properties. Using these properties, we also investigate relationships among first variation, conditional first variation, Fourier-Feynman transform and conditional Fourier-Feynman transforms of functions in a Banach algebra which is equivalent to the Fresnel class. Finally, we provide another method evaluating the Fourier-Feynman transform for the product of a function in the Banach algebra with n linear factors.
 Keywords
conditional first variation;conditional Fourier-Feynman transform;first variation;Fourier-Feynman transform;Fresnel class;Wiener paths in abstract Wiener space;
 Language
English
 Cited by
1.
CONDITIONAL FOURIER-FEYNMAN TRANSFORMS OF VARIATIONS OVER WIENER PATHS IN ABSTRACT WIENER SPACE,;

대한수학회지, 2006. vol.43. 5, pp.967-990 crossref(new window)
1.
A TRANSLATION THEOREM FOR THE GENERALIZED FOURIER-FEYNMAN TRANSFORM ASSOCIATED WITH GAUSSIAN PROCESS ON FUNCTION SPACE, Journal of the Korean Mathematical Society, 2016, 53, 5, 991  crossref(new windwow)
 References
1.
M. D. Brue, A functional transform for Feynman integrals similar to the Fourier transform, thesis, Univ. of Minnesota, Minneapolis, 1972

2.
R. H. Cameron, The first variation of an indefinite Wiener intergal, Proc. Amer. Math. Soc. 2 (1951), 914-924 crossref(new window)

3.
R. H. Cameron and D. A. Storvick, An $L_2$ analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), 1-30 crossref(new window)

4.
R. H. Cameron and D. A. Storvick, Some Banach algebras of analytic Feynman integrable functionals, An analytic functions, Lecture Notes in Math. 798 (1980), 18-27 crossref(new window)

5.
K. S. Chang, D. H. Cho, B. S. Kim, T. S. Song, and I. Yoo, Conditional Fourier-Feynman transform and convolution product over Wiener paths in abstract Wiener space, Integral Transforms Spec. Funct. 14 (2003), no. 3, 217-235 crossref(new window)

6.
K. S. Chang, D. H. Cho, B. S. Kim, T. S. Song, and I. Yoo, Fourier-Feynman transform and first variation over Wiener paths in abstract Wiener space, (2004), to appear

7.
K. S. Chang, D. H. Cho, and I. Yoo, A conditional analytic Feynman integral over Wiener paths in abstract Wiener space, Internat. J. Math. 2 (2002), no. 9, 855-870

8.
K. S. Chang, B. S. Kim, and I. Yoo, Fourier-Feynman transform, convolution and first variation of functionals on abstract Wiener space, Integral Transforms Spec. Funct. 10 (2000), 179-200 crossref(new window)

9.
K. S. Chang, T. S. Song, and I. Yoo, Analytic Fourier-Feynman transform and first variation on abstract Wiener space, J. Korean Math. Soc. 38 (2001), no. 2, 485-501

10.
D. H. Cho, Conditional analytic Feynman integral over product space of Wiener paths in abstract Wiener space, Rocky Mountain J. Math. (2003), submitted

11.
G. B. Folland, Real analysis, John Wiley & Sons, 1984

12.
G. W. Johnson and D. L. Skoug, An $L_p$ analytic Fourier-Feynman transform, Michigan Math. J. 26 (1979), 103-127 crossref(new window)

13.
G. Kallianpur and C. Bromley, Generalized Feynman integrals using analytic continuation in several complex variables, Stochastic Anal. Appl. 1984, 217-267

14.
J. Kuelbs and R. LePage, The law of the iterated logarithm for Brownian motion in a Banach space, Trans. Amer. Math. Soc. 185 (1973), 253-264 crossref(new window)

15.
H. H. Kuo, Gaussian measures in Banach spaces, Lecture Notes in Math. 463 (1975)

16.
C. Park, D. L. Skoug, and D. A. Storvick, Fourier-Feynman transfroms and the first variation, Rend. Circ. Mat. Palermo (2) 2 (1998), 277-292

17.
K. S. Ryu, The Wiener integral over paths in abstract Wiener space, J. Korean Math. Soc. 29 (1992), no. 2, 317-331