JOURNAL BROWSE
Search
Advanced SearchSearch Tips
NON-COMPACT DOUGLAS-PLATEAU PROBLEM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
NON-COMPACT DOUGLAS-PLATEAU PROBLEM
JIN, SUN SOOK;
  PDF(new window)
 Abstract
In this article, we prove the existence of two embedded minimal annuli in a slab which are all bounded by a Jordan convex curve and a straight line.
 Keywords
Douglas-Plateau problem;minimal surfaces;Riemann`s minimal examples ;Courant-Lebesgue lemma;
 Language
English
 Cited by
 References
1.
M. Anderson, Curvature estimates for minimal surfaces in 3-manifolds, Ann. Sci. Ecole. Norm. Sup. (4) 18 (1985), 89-105

2.
T. H. Colding and W. P. Minicozzi, Minimal surfaces, Courant Lect. Notes Math. 4 (1999)

3.
J. Douglas, The problem of Plateau for two contours, J. Math. Phys. Masschusetts Inst. of Tech. 10 (1930/31), 315-359

4.
Yi Fang and Jenn-Fang Hwang, Curvature estimates for minimal annuli and non- compact Douglas-Plateau problem, Comm. Anal. Geom. 8 (2000), no. 4, 871-904

5.
D. Hoffman and W. Meeks, A variational approach to the existence of complete embedded minimal surfaces, Duke. Math. J. 57 (1988), 877-893 crossref(new window)

6.
D. Hoffman and W. Meeks, The strong halfspace theorem for minimal surface, Invent. Math. 101 (1990), 373-377 crossref(new window)

7.
H. Jenkins and J. Serrin, Variational problems of minimal surface type, 2, Bound-ary value problems for the minimal surface equation, Arch. Ration. Mech. Anal.21 (1966), 321-342

8.
N. Korevaar, R. Kusner, and B. Solomon, The structure of complete embedded surfaces with constant mean curvature, J. Differential Geom. 30 (1989), 465-503

9.
F. Lopez, The classification of complete minimal surfaces with total curvature greater than $-12{\pi}$, Trans. Amer. Math. Soc. 334 (1992), 49-74 crossref(new window)

10.
W. Meeks and B. White, Minimal surfaces bounded by convex curves in parallel planes, Comm. Math. Helv. 66 (1991), 263-278 crossref(new window)

11.
J. Perez and A. Ros, Properly embedded minimal annuli bounded by a convex curve, J. Inst. Math. Jussieu 1(2) (2002), 293-305 crossref(new window)

12.
J. Perez and A. Ros, Properly embedded minimal surfaces with finite total curvature, in the global theory of minimal surfaces in flat spaces, Lecture Notes in Math. 1775 (2002), 15-66

13.
B. Riemann, Uber die Flache vom kleinsten Inhalt bei gegebener Begrebzung, Abh. Konigl. d. Wiss. Gottingen, Mathem. Cl. 13 (1867), 3-52

14.
M. Shiffman, On surfaces of stationary area bounded by two circles, or convex curves, in parallel planes, Ann. of Math. 63 (1956), 77-90 crossref(new window)

15.
B. White, Curvature estimates and compactness theorems in 3-manifolds for surfaces that are stationary for parametric elliptic functionals, Invent. Math. 88 (1987), 243-256 crossref(new window)