JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A NOTE ON END PROPERTIES OF MARCINKIEWICZ INTEGRAL
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A NOTE ON END PROPERTIES OF MARCINKIEWICZ INTEGRAL
DING, YONG;
  PDF(new window)
 Abstract
In this note we give the mapping properties of the Marcinkiewicz integral !-to. at some end spaces. More precisely, we first prove that !-to. is a bounded operator from H() to H (). As a corollary of the results above, we obtain again the weak type (1,1) boundedness of , but the condition assumed on n is weaker than Stein`s condition. Finally, we show that !-to. is bounded from BMO() to BMO(). The results in this note are the extensions of the results obtained by Lee and Rim recently.
 Keywords
Marcinkiewicz integral;weak Hardy space;BMO;
 Language
English
 Cited by
1.
Commutators of Littlewood-Paley operators, Science in China Series A: Mathematics, 2009, 52, 11, 2493  crossref(new windwow)
2.
Weighted Estimates for Multilinear Commutators of Marcinkiewicz Integrals with Bounded Kernel, Ukrainian Mathematical Journal, 2014, 66, 4, 602  crossref(new windwow)
 References
1.
A. Benedek, A. Calderon, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Natl. Acad. Sci. USA 48 (1962), 356-365 crossref(new window)

2.
L. Colzani, Hardy space on sphere, Ph.D.Thesis, Washington University, St. Louis, Mo, 1982

3.
L. Colzani, M. Taibleson, and G. Weiss, Maximal estimates for cesaro and Riesz means on spheres, Indiana Univ. Math. J. 33 (1984), 873-889 crossref(new window)

4.
Y. Ding, D. Fan, and Y. Pan, $L^p$-boundedness of Marcinkiewicz integrals with Hardy space function kernel, Acta. Math. Sinica (English series) 16 (2000), 593-600 crossref(new window)

5.
D. Fan and S. Sato, Weak type (1,1) estimates for Marcinkiewicz integrals with rough kernels, Tohoku Math. J. 53 (2001), 265-284 crossref(new window)

6.
R. Fefferman and F. Soria, The Weak space $H^1$, Studia Math. 85 (1987), 1-16

7.
Y. Han, Some properties of S-function and Marcinkiewicz integrals, Acta Sci. Natur. Univ. Pekinensis 5 (1987), 21-34

8.
J. Lee and K. S. Rim, Estimates of Marcinkiewicz integrals with bounded homo- geneous kernels of degree zero, Integral Equations Operator Theory 48 (2004), 213-223 crossref(new window)

9.
E. Stein, On the function of Littlewood-Paley, Lusin and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430-466 crossref(new window)

10.
E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970