JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ALMOST SURE CONVERGENCE FOR WEIGHTED SUMS OF NEGATIVELY ORTHANT DEPENDENT RANDOM VARIABLES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ALMOST SURE CONVERGENCE FOR WEIGHTED SUMS OF NEGATIVELY ORTHANT DEPENDENT RANDOM VARIABLES
Ko, MI-HwA; KIM, TAE-SUNG;
  PDF(new window)
 Abstract
For weighted sum of a sequence {X, X, n 1} of identically distributed, negatively orthant dependent random variables such that |r| > 0, has a finite moment generating function, a strong law of large numbers is established.
 Keywords
negatively orthant dependent random variables;strong law of large numbers;identically distributed;moment generating function;weighted sum;
 Language
English
 Cited by
1.
STRONG LAWS OF LARGE NUMBERS FOR WEIGHTED SUMS OF NEGATIVELY DEPENDENT RANDOM VARIABLES,;;;

대한수학회지, 2006. vol.43. 6, pp.1325-1338 crossref(new window)
2.
EXPONENTIAL INEQUALITY AND ALMOST SURE CONVERGENCE FOR THE NEGATIVELY ASSOCIATED SEQUENCE,;

호남수학학술지, 2007. vol.29. 3, pp.367-375 crossref(new window)
3.
Convergence properties of partial sums for arrays of rowwise negatively orthant dependent random variables,;;

Journal of the Korean Statistical Society, 2010. vol.39. 2, pp.189-197 crossref(new window)
4.
STRONG LIMIT THEOREMS FOR WEIGHTED SUMS OF NOD SEQUENCE AND EXPONENTIAL INEQUALITIES,;;;

대한수학회보, 2011. vol.48. 5, pp.923-938 crossref(new window)
5.
THE BAUM-KATZ LAW OF LARGE NUMBERS FOR NEGATIVELY ORTHANT DEPENDENT RANDOM VARIABLES,;

충청수학회지, 2011. vol.24. 1, pp.75-83
6.
CONVERGENCE PROPERTIES OF THE PARTIAL SUMS FOR SEQUENCES OF END RANDOM VARIABLES,;;

대한수학회지, 2012. vol.49. 6, pp.1097-1110 crossref(new window)
1.
Limiting behaviour for arrays of row-wise END random variables under conditions ofh-integrability, Stochastics An International Journal of Probability and Stochastic Processes, 2015, 87, 3, 409  crossref(new windwow)
2.
The Strong Consistency of the Estimator of Fixed-Design Regression Model under Negatively Dependent Sequences, Abstract and Applied Analysis, 2013, 2013, 1  crossref(new windwow)
3.
STRONG LIMIT THEOREMS FOR WEIGHTED SUMS OF NOD SEQUENCE AND EXPONENTIAL INEQUALITIES, Bulletin of the Korean Mathematical Society, 2011, 48, 5, 923  crossref(new windwow)
4.
Equivalent Conditions of Complete Convergence for Weighted Sums of Sequences of Negatively Dependent Random Variables, Abstract and Applied Analysis, 2012, 2012, 1  crossref(new windwow)
5.
A Note on Weighted Sums of Associated Random Variables, Acta Mathematica Hungarica, 2014, 143, 1, 96  crossref(new windwow)
6.
EXPONENTIAL INEQUALITY AND ALMOST SURE CONVERGENCE FOR THE NEGATIVELY ASSOCIATED SEQUENCE, Honam Mathematical Journal, 2007, 29, 3, 367  crossref(new windwow)
7.
Complete moment convergence for maximal partial sums under NOD setup, Journal of Inequalities and Applications, 2015, 2015, 1  crossref(new windwow)
8.
On the convergence rate for arrays of row-wise NOD random variables, Communications in Statistics - Theory and Methods, 2016, 45, 5, 1215  crossref(new windwow)
9.
On the rate of convergence in the strong law of large numbers for negatively orthant-dependent random variables, Communications in Statistics - Theory and Methods, 2016, 45, 21, 6209  crossref(new windwow)
10.
Convergence properties of partial sums for arrays of rowwise negatively orthant dependent random variables, Journal of the Korean Statistical Society, 2010, 39, 2, 189  crossref(new windwow)
11.
On the strong convergence rate for weighted sums of arrays of rowwise negatively orthant dependent random variables, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2013, 107, 2, 257  crossref(new windwow)
12.
Complete convergence for arrays of rowwise negatively orthant dependent random variables, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2012, 106, 2, 235  crossref(new windwow)
13.
Complete Moment Convergence and Mean Convergence for Arrays of Rowwise Extended Negatively Dependent Random Variables, The Scientific World Journal, 2014, 2014, 1  crossref(new windwow)
14.
Some Limit Theorems for Weighted Sums of Arrays of Nod Random Variables, Acta Mathematica Scientia, 2012, 32, 6, 2388  crossref(new windwow)
15.
Weighted sums of associated variables, Journal of the Korean Statistical Society, 2012, 41, 4, 537  crossref(new windwow)
16.
CONVERGENCE PROPERTIES OF THE PARTIAL SUMS FOR SEQUENCES OF END RANDOM VARIABLES, Journal of the Korean Mathematical Society, 2012, 49, 6, 1097  crossref(new windwow)
17.
Exponential inequality for a class of NOD random variables and its application, Wuhan University Journal of Natural Sciences, 2011, 16, 1, 7  crossref(new windwow)
18.
An exponential inequality for a NOD sequence and a strong law of large numbers, Applied Mathematics Letters, 2011, 24, 2, 219  crossref(new windwow)
 References
1.
Z. D. Bai and P. E. Cheng, Marcinkiewicz strong laws for linear statistics, Statist. Probab. Lett. 46 (2000), 105-112 crossref(new window)

2.
T. K. Chandra and S. Ghosal, Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent random variables, Acta. Math. Hun- gar. 71 (1996), 327-336 crossref(new window)

3.
R. Cheng and S. Gan, Almost sure convergence of weighted sums of NA sequences, Wuhan Univ. J. Nat. Sci. 3 (1998), 11-16 crossref(new window)

4.
Y. S. Chow and T. L. Lai, Limiting behavior of weighted sums of independent random variables, Ann. Probab. 1 (1973), 810-824 crossref(new window)

5.
J. Cuzick, A strong law for weighted sums of i.i.d. random variables, J. Theoret. Probab. 8 (1995), 625-641 crossref(new window)

6.
N. Ebrahimi and M. Ghosh, Multivariate Negative Dependence, Comm. Statist. Theory Methods 10 (1981), 307-336 crossref(new window)

7.
E. L. Lehmann, Some Concepts of Dependence, Ann. Statist. 43 (1966), 1137- 1153

8.
P. Matula, A note on the almost sure convergence of sums of negatively dependent random variables, Statist. Probab. Lett. 15 (1992), 209-213 crossref(new window)

9.
Y. Qi, Limit theorems for sums and maxima of pairwise negative quadrant depen- dent random variables Syst. Sci. Math. Sci. 8 (1995), 251-253

10.
W. F. Stout, Almost Sure Convergence, Academic Press, New York, 1974

11.
H. Teicher, Almost certain convergence in double arrays, Z. Wahrsch. Verw. Gebiete 69 (1985), 331-345 crossref(new window)