JOURNAL BROWSE
Search
Advanced SearchSearch Tips
WEIGHTED HARMONIC BERGMAN FUNCTIONS ON HALF-SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
WEIGHTED HARMONIC BERGMAN FUNCTIONS ON HALF-SPACES
Koo, HYUNGWOON; NAM, KYESOOK; YI, HEUNGSU;
  PDF(new window)
 Abstract
On the setting of the upper half-space H of the Eu­clidean n-space, we show the boundedness of weighted Bergman projection for 1 < p < and nonorthogonal projections for 1 p < . Using these results, we show that Bergman norm is equiva­ lent to the normal derivative norms on weighted harmonic Bergman spaces. Finally, we find the dual of b.
 Keywords
weighted Bergman kernel;harmonic Bergman functions;fractional derivative;upper half-space;
 Language
English
 Cited by
1.
CANCELATION PROPERTIES OF WEIGHTED HARMONIC BERGMAN FUNCTIONS ON HALF-SPACES,;

Proceedings of the Jangjeon Mathematical Society, 2010. vol.13. 3, pp.2.1-2.4
2.
WEIGHED HARMONIC BERGMAN FUNCTIONS AS RADIAL DERIVATIVES OF BERGMAN FUNCTIONS ON HALF-SPACES,;

Proceedings of the Jangjeon Mathematical Society, 2010. vol.13. 1, pp.97-99
3.
LIPSCHITZ TYPE CHARACTERIZATIONS OF HARMONIC BERGMAN SPACES,;

대한수학회보, 2013. vol.50. 4, pp.1277-1288 crossref(new window)
1.
Harmonic Besov spaces on the ball, International Journal of Mathematics, 2016, 27, 09, 1650070  crossref(new windwow)
2.
Double integral characterizations of harmonic Bergman spaces, Journal of Mathematical Analysis and Applications, 2011, 379, 2, 889  crossref(new windwow)
3.
LIPSCHITZ TYPE CHARACTERIZATIONS OF HARMONIC BERGMAN SPACES, Bulletin of the Korean Mathematical Society, 2013, 50, 4, 1277  crossref(new windwow)
4.
Reproducing Kernels and Radial Differential Operators for Holomorphic and Harmonic Besov Spaces on Unit Balls: a Unified View, Computational Methods and Function Theory, 2011, 10, 2, 483  crossref(new windwow)
 References
1.
S. Axler, P. Bourdon, and W. Ramey, Harmonic function theory, Springer-Verlag, New York, 1992

2.
F. Beatrous, Behavior of holomorphic functions near weakly pseudoconvex boundary points, Indiana Univ. Math. J. 40 (1991), no. 3, 915-966 crossref(new window)

3.
B. R. Choe, Projections, the weighted Bergman spaces, and the Bloch space, Proc. Amer. Math. Soc. 108 (1990), 127-136

4.
B. R. Choe, H. Koo, and H. Yi, Bergman norm estimates of Poisson integrals, Nagoya Math. J. 161 (2001), 85-125

5.
B. R. Choe, H. Koo, and H. Yi, Moment vanishing properties of harmonic Bergman functions, preprint

6.
R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in $L^P$, Asterisque 77 (1980), 11-66

7.
H. Kang and H. Koo, Estimates of the harmonic Bergman kernel on smooth domains, J. Funct. Anal. 185 (2001), 220-239 crossref(new window)

8.
H. Koo, K. Nam, and H. Yi, Weighted harmonic Bergman kernel on Half-spaces, to appear J. Math. Soc. Japan

9.
H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman spaces, Springer-Verlag, New York, 2000

10.
W. Ramey and H. Yi, Harmonic Bergman functions on half-spaces, Trans. Amer. Math. Soc. 348 (1996), 633-660 crossref(new window)