JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ERROR ESTIMATES OF NONSTANDARD FINITE DIFFERENCE SCHEMES FOR GENERALIZED CAHN-HILLIARD AND KURAMOTO-SIVASHINSKY EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ERROR ESTIMATES OF NONSTANDARD FINITE DIFFERENCE SCHEMES FOR GENERALIZED CAHN-HILLIARD AND KURAMOTO-SIVASHINSKY EQUATIONS
Choo, Sang-Mok; Chung, Sang-Kwon; Lee, Yoon-Ju;
  PDF(new window)
 Abstract
Nonstandard finite difference schemes are considered for a generalization of the Cahn-Hilliard equation with Neumann boundary conditions and the Kuramoto-Sivashinsky equation with periodic boundary conditions, which are of the type $$Ut\;+\;\frac{{\partial}^2}{{\partial}x^2} g(u,\;Ux,\;Uxx)\;
 Keywords
nonstandard finite difference scheme;Cahn-Hilliard equation;Kuramoto-Sivashinsky equation;Neumann boundary condition;periodic boundary condition;Lax-Richtmyer equivalence theorem;
 Language
English
 Cited by
1.
Weak solutions for a class of metaparabolic equations, Applicable Analysis, 2008, 87, 8, 887  crossref(new windwow)
2.
Nonstandard finite difference methods: recent trends and further developments, Journal of Difference Equations and Applications, 2016, 22, 6, 817  crossref(new windwow)
 References
1.
R. P. Agarwal, Difference equations and inequalities, Monographs and Textbooks in Pure and Applied Mathematics, vol. 155, Theory, Methods, and Applications, Marcel Dekker Inc., New York, 1992

2.
G. D. Akrivis, Finite difference discretization of the Kuramoto-Sivashinsky equation, Numer. Math. 63 (1992), no. 1, 1-11 crossref(new window)

3.
G. D. Akrivis, Finite element discretization of the Kuramoto-Sivashinsky equation, Numerical Analysis and Mathematical Modelling, Banach Center Publ., vol. 29, Polish Acad. Sci., Warsaw, 1994, pp. 155-163

4.
S. M. Choo and S. K. Chung, Conservative nonlinear difference scheme for the Cahn-Hilliard equation, Comput. Math. Appl. 36 (1998), no. 7, 31-39

5.
S. M. Choo, S. K. Chung, and K. I. Kim, Conservative nonlinear difference scheme for the Cahn-Hilliard equation. II, Comput. Math. Appl. 39 (2000), no. 1- 2, 229-243 crossref(new window)

6.
S. M. Choo, S. K. Chung, and Y. J. Lee, A Conservative difference scheme for the viscous Cahn-Hilliard equation with a nonconstant gradient energy coefficient, Appl. Numer. Math. 51 (2004), no. 2-3, 207-219 crossref(new window)

7.
C. M. Elliott and D. A. French, Numerical studies of the Cahn-Hilliard equation for phase separation, IMA J. Appl. Math. 38 (1987), no. 2, 97-128 crossref(new window)

8.
C. M. Elliott and D. A. French, A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation, SIAM J. Numer. Anal. 26 (1989), no. 4, 884-903 crossref(new window)

9.
C. M. Elliott and S. Zheng, On the Cahn-Hilliard equation, Arch. Ration. Mech. Anal. 96 (1986), no. 4, 339-357

10.
D. Furihata, A stable and conservative finite difference scheme for the Cahn- Hilliard equation, Numer. Math. 87 (2001), no. 4, 675-699 crossref(new window)

11.
D. Furihata,, Finite difference schemes for $\frac{{\partial}u}{{\partial}t}=(\frac{{\partial}}{{\partial}x})^{\alpha}\frac{{\partial}G}{{\partial}u}$. J. Comput. Phys. 181-205

12.
J. C. Lopez Marcos and J. M. Sanz-Serna, Stability and convergence in numerical analysis. III. Linear investigation of nonlinear stability, IMA J. Numer. Anal. 8 (1988), no. 1, 71-84 crossref(new window)

13.
A. V. Manickam, K. M. Moudgalya, and A. K. Pani, Second-order splitting combined with orthogonal cubic spline collocation method for the Kuramoto- Sivashinsky equation, Comput. Math. Appl. 35 (1998), no. 6, 5-25 crossref(new window)

14.
R. E. Mickens, Applications of nonstandard finite difference schemes, World Scientific, New Jersey, 2000

15.
T. Ortega and J. M. Sanz-Serna, Nonlinear stability and convergence of finite- difference methods for the 'good' Boussinesq equation, Numer. Math. 58 (1990), no. 2, 215-229 crossref(new window)

16.
E. Tadmor, The well-posedness of the Kuramoto-Sivashinsky equation, SIAM J. Math. Anal. 17 (1986), no. 4, 884-893 crossref(new window)