JOURNAL BROWSE
Search
Advanced SearchSearch Tips
R-HOMOMORPHISMS AND R-HOMOGENEODS MAPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
R-HOMOMORPHISMS AND R-HOMOGENEODS MAPS
Cho, Yong-Uk;
  PDF(new window)
 Abstract
In this paper, all rings and all near-rings R are associative, all modules are right R-modules. For a near-ring R, we consider representations of R as R-groups. We start with a study of AGR rings and their properties. Next, for any right R-module M, we define a new concept GM module and investigate the commutative property of faithful GM modules and some characterizations of GM modules. Similarly, for any near-ring R, we introduce an R-group with MR-property and some properties of MR groups.
 Keywords
AR rings;AGR rings;R-homogeneous maps;centralizers;GM modules;MR groups;
 Language
English
 Cited by
1.
SOME RESULTS ON IFP NEAR-RINGS,;

호남수학학술지, 2009. vol.31. 4, pp.639-644 crossref(new window)
1.
SOME RESULTS ON IFP NEAR-RINGS, Honam Mathematical Journal, 2009, 31, 4, 639  crossref(new windwow)
 References
1.
F. W. Anderson and K. R. Fuller, Rings and categories of modules, Springer- Verlag, New York, Heidelberg, Berlin, 1974

2.
P. B. Bhattacharya, S. K. Jain, and S. R. Nagpaul, Basic Abstract Algebra, Cambridge University Press, 1994

3.
G. F. Birkenmeier and Y. U. Cho, Additive endomorphisms generated by ring endomorphisms, East-West J. Math. 1 (1998), no. 1, 73-84

4.
S. Dhompongsa and J. Sanwong, Rings in which additive mappings are multi- plicative, Studia Sci. Math. Hungar. 22 (1987), 357-359

5.
M. Dugas, J. Hausen, and J. A. Johnson, Rings whose additive endomorphisms are multiplicative, Period. Math. Hungar. 23 (1991), 65-73 crossref(new window)

6.
M. Dugas, J. Hausen, and J. A. Johnson, Rings whose additive endomorphisms are ring endomorphisms, Bull. Austral. Math. Soc. 45 (1992), 91-103 crossref(new window)

7.
S. Feigelstock, Rings whose additive endomorphisms are multiplicative, Period. Math. Hungar. 19 (1988), 257-260 crossref(new window)

8.
Y. Hirano, On rings whose additive endomorphisms are multiplicative, Period. Math. Hungar. 23 (1991), 87-89 crossref(new window)

9.
A. V. Kelarev, On left self distributive rings, Acta Math. Hungar. 71 (1996), 121-122 crossref(new window)

10.
K. H. Kim and F. W. Roush, Additive endomorphisms of rings, Period. Math. Hungar. 12 (1981), 241-242 crossref(new window)

11.
C. G. Lyons and J. D. P. Meldrum, Characterizing series for faithful D.G. near- rings, Proc. Amer. Math. Soc. 72 (1978), 221-227 crossref(new window)

12.
S. J. Mahmood and J. D. P. Meldrum, D.G. near-rings on the infinite dihe- dral groups, Near-rings and Near-fields (1987), Elsevier Science Publishers B.V (North-Holland), 151-166

13.
C. J. Maxson and K. C. Smith, Simple near-ring centralizers of finite rings, Proc. Amer. Math. Soc. 75 (1979), 8-12

14.
C. J. Maxson and K. C. Smith, The centralizer of a group endomorphism, J. Algebra 57 (1979), 441- 448 crossref(new window)

15.
C. J. Maxson and A. B. Van der Merwe, Forcing linearity numbers for modules over rings with nontrivial idempotents, J. Algebra 256 (2002), 66-84 crossref(new window)

16.
J. D. P. Meldrum, Near-rings and their links with groups, Pitman, Boston, London and Melbourne, 1985

17.
J. D. P. Meldrum, Upper faithful D.G. near-rings, Proc. Edinb. Math. Soc. 26 (1983), 361-370 crossref(new window)

18.
G. Pilz, Near-rings, North Holland, Amsterdam, New York and Oxford, 1983

19.
R. P. Sullivan, Research problem, Period. Math. Hungar. 8 (1977), no. 23, 313- 314 crossref(new window)