JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONSERVATIVE MINIMAL QUANTUM DYNAMICAL SEMIGROUPS GENERATED BY NONCOMMUTATIVE ELLIPTIC OPERATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONSERVATIVE MINIMAL QUANTUM DYNAMICAL SEMIGROUPS GENERATED BY NONCOMMUTATIVE ELLIPTIC OPERATORS
Bahn, Chang-Soo; Ko, Chul-Ki;
  PDF(new window)
 Abstract
By employing Chebotarev and Fagnola's sufficient conditions for conservativity of minimal quantum dynamical semigroups [7, 8], we construct the conservative minimal quantum dynamical semigroups generated by noncommutative elliptic operators in the sense of [2]. We apply our results to concrete examples.
 Keywords
quantum dynamical semigroups;conservative semi­groups;noncommutative elliptic operators;dissipative operators;
 Language
English
 Cited by
1.
QUANTUM DYNAMICAL SEMIGROUPS GENERATED BY NONCOMMUTATIVE UNBOUNDED ELLIPTIC OPERATORS, Reviews in Mathematical Physics, 2006, 18, 06, 595  crossref(new windwow)
 References
1.
A. Arnold and C. Sparber, Conservative quantum dynamical semigroups for mean-field quantum diffusion models, preprint, arXiv: math-ph/0309052v1

2.
C. Bahn and Y. M. Park, Feynman-Kac representation and Markov property of semigroups generated by noncommutative elliptic operators, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6 (2003), 103-121

3.
B. V. R. Bhat and K. B. Sinha, Examples of unbounded generators leading to non-conservative minimal semigroups, Quantum Prob. Related Topics IX (1994), 89-103

4.
O. Bratelli and D. W. Robinson, Operator algebras and quantum statistical mechanics 1, Springer, second edition, 1987

5.
A. M. Chebotarev, Suficient conditions for conservativity of dynamical semi- groups, Thoeret. and Math. Phys. 80 (1989), no. 2, 804-818 crossref(new window)

6.
A. M. Chebotarev, Suficient conditions for conservativism of a minimal dynamical semigroup, Math. Notes 52 (1993), 1067-1077 crossref(new window)

7.
A. M. Chebotarev and F. Fagnola, Suficient conditions for conservativity of quantum dynamical semigroups, J. Funct. Anal. 118 (1993), 131-153 crossref(new window)

8.
A. M. Chebotarev and F. Fagnola, Sufficient conditions for conservativity of minimal quantum dynamical semigroups, J. Funct. Anal. 153 (1998), 382-404 crossref(new window)

9.
A. M. Chebotarev and S. Yu. Shustikov, Conditions suficient for the conservativity of a minimal quantum dynamical semigruop, Math. Notes 71 (2002), no. 5, 692-710 crossref(new window)

10.
E. B. Davies, Quantum dynamical semigroups and the neutron diffusion equation, Rep. Math. Phys. 11 (1977), 169-188 crossref(new window)

11.
J. Derenzinski and V. Jaksic, Spectral theory of Paul-Fierz operators, J. Funct. Anal. 180 (2001), 243-327 crossref(new window)

12.
F. Fagnola, Chebotarev's suficient conditions for conservativity of quantum dynamical semigroups, Quantum Probab. Related Topics VII (1993), 123-142

13.
F. Fagnola and R. Rebolledo, On the existence of stationary states for quantum dynamical semigroup, J. Math. Phys. 42 (2001), 1296-1308 crossref(new window)

14.
F. Fagnola and R. Rebolledo, Subharmonic projections for a quantum Markov semigroup, J. Math. Phys. 43 (2002), no. 2, 1074-1082 crossref(new window)

15.
C. K. Ko and Y. M. Park, Construction of a family of quantum Ornstein-Uhlenbeck semigroups, J. Math. Phys. 45 (2004), 609-627 crossref(new window)

16.
G. Lindblad, On the generator on dynamical semigroups, Comm. Math. Phys. 48 (1976), 119-130 crossref(new window)

17.
J. M. Lindsay and K. B. Sinha, Feynman-Kac representaion of some noncommutative elliptic operators, J. Funct. Anal. 147 (1997), 400-419 crossref(new window)

18.
K. R. Parthasarathy, An Introduction to Qunatum stochastic Calclus, Monographs in Mathematics, Birkhauser, Basel, 1992

19.
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, New York, Berlin, Heidelberg, Tokyo, 1983

20.
M. Reed and B. Simon, Method of modern mathmatical physics I, II, Academic press, 1980