JOURNAL BROWSE
Search
Advanced SearchSearch Tips
BRILL-NOETHER DIVISORS ON THE MODULI SPACE OF CURVES AND APPLICATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
BRILL-NOETHER DIVISORS ON THE MODULI SPACE OF CURVES AND APPLICATIONS
BALLICO EDOARDO; FONTANARI CLAUDIO;
  PDF(new window)
 Abstract
Here we generalize previous work by Eisenbud-Harris and Farkas in order to prove that certain Brill-Noether divisors on the moduli space of curves have distinct supports. From this fact we deduce non-trivial regularity results for a higher co dimensional Brill-Noether locus and for the general -gonal curve of odd genusg.
 Keywords
Brill-Noether divisor;moduli space of curves;
 Language
English
 Cited by
1.
Remarks on Brill–Noether divisors and Hilbert schemes, Journal of Pure and Applied Algebra, 2012, 216, 2, 377  crossref(new windwow)
 References
1.
E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren Math. Wiss. 267 (1985)

2.
M.-C. Chang and Z. Ran, The Kodaira dimension of the moduli space of curves of genus 15, J. Differential Geom. 24 (1986), no. 2, 205-220

3.
M. Cornalba and J. Harris, Divisor classes associated to families of stable varieties, with applications to the moduli space of curves, Ann. Sci. Ecole Norm. Sup. (4) 21 (1988), no. 3, 455-475

4.
M. Cornalba and J. Harris, Linear series on a general k-gonal curve, Abh. Math. Sem. Univ. Hamburg 69 (1999), 347-371 crossref(new window)

5.
M. Cornalba and J. Harris, Linear series on 4-gonal curves, Math. Nachr. 213 (2000), 35-55 crossref(new window)

6.
D. Edidin, Brill-Noether theory in codimension-two, J. Algebraic Geom. 2 (1993), no. 1, 25-67

7.
D. Eisenbud and J. Harris, Limit linear series: basic theory, Invent. Math. 85 (1986), no. 2, 337-371 crossref(new window)

8.
D. Eisenbud and J. Harris, Existence, decomposition, and limits of certain Weierstrass points, Invent. Math. 87 (1987), no. 3, 495-515 crossref(new window)

9.
D. Eisenbud and J. Harris, The Kodaira dimension of the moduli space of curves of genus ¸ 23, Invent. Math. 90 (1987), no. 2, 359-387 crossref(new window)

10.
D. Eisenbud and J. Harris, Irreducibility of some families of linear series with Brill-Noether number-1, Ann. Sci. Ecole Norm. Sup. (4) 22 (1989), no. 1, 33-53

11.
G. Farkas, The geometry of the moduli space of curves of genus 23, Math. Ann. 318 (2000), no. 1, 43-65 crossref(new window)

12.
J. Harris and D. Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982), no. 1, 23-88 crossref(new window)

13.
F. Steffen, A generalized principal ideal theorem with an application to Brill-Noether theory, Invent. Math. 132 (1998), no. 1, 73-89 crossref(new window)